Hardening Software for Rule-based Modeling.
用于基于规则的建模的强化软件。
基本信息
- 批准号:8753042
- 负责人:
- 金额:$ 34.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic SoftwareAlgorithmsAutomobile DrivingBehaviorBindingBiochemicalBiologicalCell modelCerealsCodeComplexComputer softwareComputing MethodologiesCoupledDataData AnalysesData SetDecision MakingDefectDependenceDiagnosisDifferential EquationEnsureEnvironmentEquationEtiologyEventExhibitsGoalsImageryKineticsMethodsModelingNonlinear DynamicsPhosphorylationPropertyProteomicsQualifyingReactionReceptor Protein-Tyrosine KinasesResearchResearch PersonnelResearch Project GrantsSignal TransductionSimulateSiteSoftware EngineeringSoftware ToolsSolutionsSpecific qualifier valueStudy modelsSystemSystems BiologyTestingTimeTranslatingTyrosineTyrosine PhosphorylationUncertaintyUpdateWritingbasecluster computingcombinatorialdesignexperienceimprovedinformation processingnovelopen sourcepublic health relevanceresearch studysimulationsoftware developmenttool
项目摘要
DESCRIPTION (provided by applicant): Approximately 30 software tools have been developed for rule-based modeling of biomolecular interaction networks. These tools enable new types of modeling studies. They are particularly useful for investigating biomolecular site dynamics: changes in the states of the functional sites of biomolecules, such as site-specific phosphorylation dynamics. With few exceptions, available software for rule-based modeling is still in a primitive state and critical capabilities are simply unavailable. Existing tools do not provide capabilities that are routinely used in ODE modeling, such as fitting, sensitivity analysis and bifurcation analysis. Moreover, simulators that implement the most generally applicable simulation methods (direct methods) are not being actively developed, and these simulators need to be updated to properly handle certain classes of important problems as well as to offer greater efficiency. We propose to create a toolbox of software tools that will advance the field of
computational systems biology. We have identified gaps in existing rule-based software capabilities and present a systematic approach to fill them. Our plan for developing more efficient direct simulation tools involves a two-pronged approach: enabling use of available simulators in distributed computing environments and developing new equation-free computational methods that offer the promise of greater efficiency and integration with existing data analysis software packages. In developing this toolbox, we will improve software for rule-based modeling; integrate existing software tools, and developing new tools for sensitivity and bifurcation analysis and data fitting. These tools are needed so that rule-based modelers can leverage data suited for calibrating parameters of rule-based models, including high-throughput proteomic data. These tools are also needed for diagnosing the dependence of predicted model behaviors on uncertain model parameters, designing experiments to reduce uncertainty in parameter estimates, and elucidating bifurcations (points in parameter space at which sharp transitions in behavior occur). We will test and validate these tools by building a model of receptor tyrosine kinase (RTK) signaling and using this model to investigate how site-specific tyrosine phosphorylation depends on properties of RTK tyrosines and their binding partners. This focus on a driving biological question will ensure that our software development activities are directed at useful capabilities. Our experience developing software tools for rule-based modeling, as well as novel methods, uniquely qualifies us to carry out this proposed project.
描述(由申请人提供):已经开发了大约 30 个软件工具用于生物分子相互作用网络的基于规则的建模。这些工具支持新型建模研究。它们对于研究生物分子位点动态特别有用:生物分子功能位点状态的变化,例如位点特异性磷酸化动态。除少数例外,用于基于规则的建模的可用软件仍处于原始状态,并且关键功能根本不可用。现有工具不提供 ODE 建模中常规使用的功能,例如拟合、灵敏度分析和分岔分析。此外,实现最普遍适用的模拟方法(直接方法)的模拟器并未得到积极开发,并且需要更新这些模拟器以正确处理某些类别的重要问题并提供更高的效率。我们建议创建一个软件工具箱,以推动该领域的发展
计算系统生物学。我们已经确定了现有基于规则的软件功能中的差距,并提出了一种系统方法来填补这些差距。我们开发更高效的直接模拟工具的计划涉及双管齐下的方法:在分布式计算环境中使用可用的模拟器,并开发新的无方程计算方法,以提供更高的效率并与现有数据分析软件包集成。在开发这个工具箱时,我们将改进基于规则的建模软件;集成现有的软件工具,并开发用于敏感性和分岔分析以及数据拟合的新工具。需要这些工具,以便基于规则的建模者可以利用适合校准基于规则的模型参数的数据,包括高通量蛋白质组数据。还需要这些工具来诊断预测模型行为对不确定模型参数的依赖性,设计实验以减少参数估计的不确定性,并阐明分叉(参数空间中发生行为急剧转变的点)。我们将通过构建受体酪氨酸激酶 (RTK) 信号传导模型并使用该模型来研究位点特异性酪氨酸磷酸化如何依赖于 RTK 酪氨酸及其结合伴侣的特性来测试和验证这些工具。对驱动性生物学问题的关注将确保我们的软件开发活动针对有用的功能。我们在开发用于基于规则的建模的软件工具以及新颖方法方面的经验,使我们有资格执行这个拟议的项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William S Hlavacek其他文献
William S Hlavacek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William S Hlavacek', 18)}}的其他基金
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10399590 - 财政年份:2021
- 资助金额:
$ 34.27万 - 项目类别:
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10211871 - 财政年份:2021
- 资助金额:
$ 34.27万 - 项目类别:
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10211871 - 财政年份:2021
- 资助金额:
$ 34.27万 - 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10558581 - 财政年份:2020
- 资助金额:
$ 34.27万 - 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10337242 - 财政年份:2020
- 资助金额:
$ 34.27万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9547104 - 财政年份:2017
- 资助金额:
$ 34.27万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9769647 - 财政年份:2017
- 资助金额:
$ 34.27万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9139424 - 财政年份:2015
- 资助金额:
$ 34.27万 - 项目类别:
相似国自然基金
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
- 批准号:22373112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
- 批准号:52335001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
面向量子模拟算法的量子软件优化技术研究
- 批准号:62302395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高吞吐低时延的多元LDPC码译码算法及其软件架构研究
- 批准号:62301029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
凸复合二次锥优化问题的算法及软件研究
- 批准号:12271015
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
- 批准号:
10784983 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
Real time relapse risk scoring for Opioid Use Disorder (OUD) from clinical trial datasets
根据临床试验数据集对阿片类药物使用障碍 (OUD) 进行实时复发风险评分
- 批准号:
10585452 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
- 批准号:
10643313 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
A deep learning algorithm to detect signs of cognitive impairment in electronic health records
用于检测电子健康记录中认知障碍迹象的深度学习算法
- 批准号:
10900991 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别: