Real time relapse risk scoring for Opioid Use Disorder (OUD) from clinical trial datasets

根据临床试验数据集对阿片类药物使用障碍 (OUD) 进行实时复发风险评分

基本信息

项目摘要

Real time relapse risk scoring for Opioid Use Disorder (OUD) from clinical trial datasets Project Summary Any clinician treating a patient with Opioid Use Disorder (OUD) would like to know whether this patient would relapse in the next week or month. Such a score, analogous to a credit score in consumer finance, may be similarly obtained from longitudinal data streams derived from patient behavior during SUD treatment. There are several common data sources that every OUD patient in treatment produces: a binary, longitudinal data survey of use patterns for a set of pre-determined substances of abuse, treatment session attendance records, and medication records. In particular, urine drug screens (UDS) or alcohol and nicotine breathalyzers and standard Timeline Follow Back (TLFB) questionnaires are universal surveys in every treatment delivery context, including large pragmatic clinical trials. While these data streams are incomplete, of different lengths and sampling frequencies, and correlate in complex ways, contemporary machine learning methods allow us to overcome these challenges. We aim to build a toolbox that would allow for the following: 1) standardized methods for risk scoring and visualization from UDS and TLFB datasets in existing large clinical trials; 2) standard methods for inferences of risk scores: procedure for hypothesis testing whether an intervention made a difference in the risk scores and their trajectories. 3) user-friendly software modules aimed toward researchers and administrators for quality improvement projects and customized predictive modeling pipelines, and interpretable web portal for clinicians, analogous to a credit report. This proposal will also incorporate usability survey and evaluation for algorithmic bias. These applications will provide a computational framework for future real time predictive modeling work for many other different substance use disorders.
根据临床试验数据集对阿片类药物使用障碍 (OUD) 进行实时复发风险评分 项目概要 任何治疗阿片类药物使用障碍 (OUD) 患者的临床医生都想知道该患者是否会 下周或下个月复发。这样的分数,类似于消费金融中的信用分数,可能是 同样是从 SUD 治疗期间患者行为的纵向数据流中获得的。那里 每个接受治疗的 OUD 患者都会产生几个常见的数据源:二进制纵向数据 调查一组预先确定的滥用药物的使用模式、治疗疗程出勤记录、 以及用药记录。特别是尿液药物筛查 (UDS) 或酒精和尼古丁呼气分析仪以及 标准时间线追踪 (TLFB) 问卷是每次治疗中的普遍调查 背景,包括大型实用临床试验。虽然这些数据流不完整、长度不同 和采样频率,并以复杂的方式关联,当代机器学习方法使我们能够 克服这些挑战。我们的目标是构建一个工具箱,该工具箱将实现以下功能:1)标准化 现有大型临床试验中 UDS 和 TLFB 数据集的风险评分和可视化方法; 2) 风险评分推断的标准方法:假设检验干预措施是否有效的程序 风险评分及其轨迹的差异。 3)用户友好的软件模块旨在 质量改进项目和定制预测建模流程的研究人员和管理人员, 以及可供临床医生解释的门户网站,类似于信用报告。该提案还将纳入 算法偏差的可用性调查和评估。这些应用程序将提供计算框架 未来针对许多其他不同物质使用障碍的实时预测建模工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying Liu其他文献

CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer
CD44 工程介孔二氧化硅纳米粒子用于克服乳腺癌的多药耐药性
  • DOI:
    10.1016/j.apsusc.2015.01.204
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Wang;Ying Liu;Shouju Wang;Donghong Shi;Xianguang Zhou;Chunyan Wang;Jiang Wu;Zhiyong Zeng;Yanjun Li;Jing Sun;Ji;ong Wang;Longjiang Zhang;Zhaogang Teng;Guangming Lu
  • 通讯作者:
    Guangming Lu

Ying Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying Liu', 18)}}的其他基金

Understanding the role of DNA damage repair in racial disparities of triple-negative breast cancer outcomes
了解 DNA 损伤修复在三阴性乳腺癌结果种族差异中的作用
  • 批准号:
    10561640
  • 财政年份:
    2022
  • 资助金额:
    $ 68.34万
  • 项目类别:
Understanding the role of DNA damage repair in racial disparities of triple-negative breast cancer outcomes
了解 DNA 损伤修复在三阴性乳腺癌结果种族差异中的作用
  • 批准号:
    10347836
  • 财政年份:
    2022
  • 资助金额:
    $ 68.34万
  • 项目类别:
Reconnecting the injured cervical spinal cord by transplanted human iPSC-derived neural progenitors
通过移植人类 iPSC 衍生的神经祖细胞重新连接受损的颈脊髓
  • 批准号:
    10614660
  • 财政年份:
    2019
  • 资助金额:
    $ 68.34万
  • 项目类别:
Reconnecting the injured cervical spinal cord by transplanted human iPSC-derived neural progenitors
通过移植人类 iPSC 衍生的神经祖细胞重新连接受损的颈脊髓
  • 批准号:
    10596787
  • 财政年份:
    2019
  • 资助金额:
    $ 68.34万
  • 项目类别:

相似海外基金

Integrated Treatment for Enhancing Growth in Recovery during Adolescence (InTEGRA)
促进青春期恢复生长的综合治疗 (InTEGRA)
  • 批准号:
    10680616
  • 财政年份:
    2023
  • 资助金额:
    $ 68.34万
  • 项目类别:
A multi-team system implementation strategy to improve buprenorphine adherence for patients who initiate treatment in the emergency department
多团队系统实施策略,以提高在急诊科开始治疗的患者的丁丙诺啡依从性
  • 批准号:
    10740793
  • 财政年份:
    2023
  • 资助金额:
    $ 68.34万
  • 项目类别:
Expanding the uSafeUS Mobile App to Reduce Alcohol-Involved Sexual Assault on College Campuses
扩展 uSafeUS 移动应用程序以减少大学校园中涉及酒精的性侵犯
  • 批准号:
    10790804
  • 财政年份:
    2023
  • 资助金额:
    $ 68.34万
  • 项目类别:
A randomized clinical trial: Examining a brief parent-intervention to reduce college student drinking and cannabis use
一项随机临床试验:检查简短的家长干预以减少大学生饮酒和吸食大麻
  • 批准号:
    10502205
  • 财政年份:
    2022
  • 资助金额:
    $ 68.34万
  • 项目类别:
Brief Personalized Feedback Intervention for Latinx Hazardous Drinkers: A Community-Based Intervention
针对拉丁裔危险饮酒者的简短个性化反馈干预:基于社区的干预
  • 批准号:
    10482223
  • 财政年份:
    2022
  • 资助金额:
    $ 68.34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了