Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
基本信息
- 批准号:10337242
- 负责人:
- 金额:$ 67.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-07 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAffectBAY 54-9085BRAF geneBehaviorBindingBiochemicalBiological ModelsCaco-2 CellsCancer cell lineCell LineCell ProliferationCell modelCellsClinicClinicalColorectal CancerComplexComputer ModelsCoupledDataDrug CombinationsDrug ControlsDrug TargetingDrug resistanceEffectivenessFeedbackFoundationsFree EnergyGeneticGenetically Engineered MouseGoalsGrowthIn VitroKSR geneKineticsKnock-outLinkMAP Kinase GeneMEKsMalignant NeoplasmsMelanoma CellModelingMolecularMolecular BiologyMolecular ConformationMutateMutationOncogenicPathway interactionsPharmaceutical PreparationsPhosphotransferasesPositioning AttributePropertyProtein IsoformsProtein KinaseProteinsRecoveryRegulationResistanceScaffolding ProteinSignal PathwaySignal TransductionSignaling ProteinSpecificitySystemSystems BiologyTestingTherapeuticThermodynamicsTimeValidationWorkXenograft procedurebasecell transformationclinical efficacydimerdrug efficacydrug sensitivityexperimental studyin vivoinhibitorkinase inhibitorknock-downmathematical modelmelanomamolecular dynamicsmolecular scalemulti-scale modelingnext generationnovelnovel strategiesoverexpressionpatient derived xenograft modelprecision medicinepredictive modelingpreventprotein expressionresponsescaffoldsmall molecule inhibitorstandard of caresuccesstargeted treatmenttherapy resistanttooltumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Small molecule inhibitors targeting the RAF/MEK/ERK pathway have become potent tools in precision medicine,
but their clinical efficacy is highly variable across the diversity of RAS- and BRAF-mutated cancers. Even in
susceptible cancers, these inhibitors rarely give durable responses. Studying the causes of resistance, which
include ‘paradoxical’ ERK pathway activation by RAF inhibitors, has revealed complex molecular adaptations in
the complicated networks comprised of RAF and ERK pathway kinases. These complexities limit our ability to
understand and predict effectiveness of targeted therapies, especially in combination – despite decades of
intense study, including mathematical modeling. Accurate predictions require understanding not only of the
molecular complexities of protein kinase regulation and the intricate systems-level behavior of the networks that
kinase constitute, but also of how these two levels of control are coupled. The challenge of accurately predicting
effectiveness of targeted therapies and their combinations therefore demands an amalgamation of molecular
and systems biology approaches. The systems biology project proposed here aims to identify optimal
combinations of kinase inhibitors through mechanistic models that integrate understanding of both:
1) Conformation selectivity of kinase inhibitors – affecting structural, thermodynamic and kinetic properties of the
targeted kinase(s); and 2) Systems-level network properties, including feedback loops, mutations and
kinase/scaffold abundances, which can modify feedback loops and allow normally inconsequential kinase
isoforms to compensate for isoform-specific kinase inhibition. Combining these features necessitates novel
approaches to modeling cell signaling that directly link molecular/structural and network facets to predict which
inhibitors and their combinations can efficiently suppress oncogenic signaling while disabling or delaying signal
recovery, growth, and drug resistance. We propose to develop such next-generation multiscale models of
oncogenic ERK signaling and drug responses, and to establish a new conceptual foundation for discovering
effective drug combinations by integrating structural, thermodynamic and kinetic information – and combining
short time-scale molecular dynamics (MD) with long time-scale modeling of systems-level dynamics. We will test
our model predictions rigorously by integrating and iterating modeling and experimental studies. Experimental
studies will begin in paired isogenic cancer cell lines with defined mutational differences. Once model predictions
are suitably robust, we will progress to panels of cancer cell lines, then to cell line-derived xenografts in vivo,
and then to patient-derived xenografts and genetically engineered mouse models (GEMMs) of melanoma – as
a presage to clinically integrated predictions. We will determine if the strategy of hitting a kinase by two (or more)
inhibitors with distinct conformation selectivity – as appears promising in our preliminary data – is generally
applicable, can be combined with inhibition of different targets within a pathway, and can be understood at a
detailed mechanistic level using our multiscale models.
项目概要/摘要
针对 RAF/MEK/ERK 通路的小分子抑制剂已成为精准医疗的有力工具,
但它们的临床疗效在不同的 RAS 和 BRAF 突变癌症中差异很大。
对于易感癌症,这些抑制剂很少能产生持久的反应,而研究耐药性的原因。
包括 RAF 抑制剂“矛盾的”ERK 通路激活,揭示了复杂的分子适应
由 RAF 和 ERK 通路激酶组成的复杂网络限制了我们的能力。
了解并预测靶向治疗的有效性,尤其是联合治疗——尽管几十年来
深入的研究,包括数学建模,不仅需要理解。
蛋白激酶调节的分子复杂性和网络的复杂系统级行为
激酶的构成,以及这两个控制水平如何耦合的挑战。
因此,靶向治疗及其组合的有效性需要分子融合
这里提出的系统生物学项目旨在最佳地识别。
通过整合对以下两者的理解的机制模型来组合激酶抑制剂:
1) 激酶抑制剂的构象选择性——影响其结构、热力学和动力学特性
目标激酶;和 2) 系统级网络特性,包括反馈循环、突变和
激酶/支架丰度,可以修改反馈环并允许通常无关紧要的激酶
结合这些特征需要新的异构体来补偿异构体特异性激酶抑制。
细胞信号传导建模方法直接连接分子/结构和网络方面以预测哪些
抑制剂及其组合可以有效抑制致癌信号,同时禁用或延迟信号
我们建议开发此类下一代多尺度模型。
致癌 ERK 信号传导和药物反应,并为发现建立新的概念基础
通过整合结构、热力学和动力学信息并结合起来有效的药物组合
我们将测试短时标分子动力学(MD)和长时标系统级动力学建模。
我们的模型通过整合和迭代建模和实验研究进行了严格的预测。
研究将在具有明确突变差异的配对同基因癌细胞系中开始。
足够强大,我们将进展到癌细胞系组,然后是细胞系衍生的体内异种移植物,
然后是源自患者的黑色素瘤异种移植物和基因工程小鼠模型 (GEMM)——如
我们将确定是否采用两次(或更多)击中激酶的策略。
具有独特构象选择性的抑制剂——正如我们的初步数据中显示的那样——通常是
适用,可以与途径内不同靶标的抑制相结合,并且可以在一定程度上理解
使用我们的多尺度模型详细的机械水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William S Hlavacek其他文献
William S Hlavacek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William S Hlavacek', 18)}}的其他基金
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10399590 - 财政年份:2021
- 资助金额:
$ 67.44万 - 项目类别:
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10211871 - 财政年份:2021
- 资助金额:
$ 67.44万 - 项目类别:
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10211871 - 财政年份:2021
- 资助金额:
$ 67.44万 - 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10558581 - 财政年份:2020
- 资助金额:
$ 67.44万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9547104 - 财政年份:2017
- 资助金额:
$ 67.44万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9769647 - 财政年份:2017
- 资助金额:
$ 67.44万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9139424 - 财政年份:2015
- 资助金额:
$ 67.44万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10558581 - 财政年份:2020
- 资助金额:
$ 67.44万 - 项目类别:
Improving Longitudinal Quality of Life Assessment in Hepatocellular Carcinoma
改善肝细胞癌的纵向生活质量评估
- 批准号:
8568295 - 财政年份:2013
- 资助金额:
$ 67.44万 - 项目类别:
Improving Longitudinal Quality of Life Assessment in Hepatocellular Carcinoma
改善肝细胞癌的纵向生活质量评估
- 批准号:
8692696 - 财政年份:2013
- 资助金额:
$ 67.44万 - 项目类别: