Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
基本信息
- 批准号:9139424
- 负责人:
- 金额:$ 51.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-07 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAllyApoptosisAutophagocytosisBiologicalBiological ProcessBiologyCancer cell lineCell Cycle KineticsCell DeathCell LineCell SurvivalCellsCellular biologyCessation of lifeComplexComputational algorithmComputer SimulationComputersDataData SetDevicesDigestionDrug resistanceEngineeringEquilibriumFoundationsGeneticGoalsHealthHypoxiaIndividualInterdisciplinary StudyInterventionKRAS2 geneKineticsLaboratoriesLinkLipidsMachine LearningMalignant NeoplasmsMalignant neoplasm of lungMeasurementMeasuresMediatingModelingMolecularMolecular TargetMonte Carlo MethodMutationNon-Small-Cell Lung CarcinomaNuclear FissionNuclear WeaponNutrientOncogenicOutputPathway interactionsPatientsPhenotypePhysicsPhysiologicalPlayProcessProteinsPublic HealthRNA InterferenceReactionRecyclingResearchResearch PersonnelResearch Project GrantsResolutionRoleScientistSignal TransductionSiteSpecific qualifier valueStagingStarvationStressStructureSystemTestingTherapeuticWarWorld War IIassaultbasecancer cellcell behaviordesigndrug developmentenvironmental stressorimprovedinhibition of autophagyinhibitor/antagonistinnovationmodels and simulationmutantnovelprogramsresponsestressortherapeutic targettooltumor progressionweapons
项目摘要
DESCRIPTION (provided by applicant): Autophagy is a complex intracellular recycling program associated with tumor progression and cancer cell survival. Researchers still lack strategies to effectively target this process, and an understanding of when to apply such strategies. Oncogenic stress, such as that elicited by mutant KRAS, can activate autophagy to promote cancer cell survival. Importantly, KRAS mutations are linked to 40% of lung cancer deaths in the U.S. each year. Therefore, we propose an innovative, multidisciplinary research project that investigates autophagy in connection with KRAS: we will integrate predictive computational modeling and high-quality cell-based measurements to accurately model the autophagic process in KRAS-driven lung cancer. We anticipate that our model will help identify the most effective therapeutic strategies for targeting autophagy in cancer. Specific Aim #1: Validate a mechanistic model of the core autophagy pathway to predict targets for the effective inhibition of autophagy. We have specified a mechanistic model through "rules" that capture the key biological processes comprising the autophagy pathway. To validate this model, we measured how the individual steps of autophagy respond to physiological and oncogenic stressors, and systematic RNAi perturbations. Here, we propose to tune the model to align with quantitative data, and test predictions of the rate-limiting steps. This framework will explore the
possibility that autophagy is controlled by a bistable switch, an intriguing model-derived hypothesis with therapeutic relevance. As part of this aim, we will identify effective autophagy inhibitors in wildtype and mutant KRAS backgrounds. Specific Aim #2: Model the relationship of autophagy and cell fate to test therapeutic predictions for KRAS-driven lung cancer. The autophagy model will be extended to investigate the relationship between autophagic flux and cell survival and death. For this effort, we will implement an innovative data-driven approach, which involves defining relationships between measured inputs (signaling readouts) and outputs (autophagic flux, survival, and death) in datasets. We will use this model and patient-derived cell
lines to predict the therapeutic benefit of inhibiting autophagy in KRAS-driven lung cancer. Our collaborative research brings mechanistic modeling and cell biology experts together for a project that is highly relevant and valuable to public health. Mechanistic modeling was used by Los Alamos National Laboratory after World War II to assist with complex nuclear fission devices like the atomic bomb. We will use modeling to predict complex cancer cell behavior, with the ultimate goal of contributing a valuable weapon to the "war on cancer."
描述(由申请人提供):自噬是一种与肿瘤进展和癌细胞存活相关的复杂的细胞内回收程序,研究人员仍然缺乏有效针对这一过程的策略,也不了解何时应用此类策略,例如引发的策略。重要的是,KRAS 突变与美国每年 40% 的肺癌死亡有关。因此,我们提出了一项创新的多学科研究项目。研究与 KRAS 相关的自噬:我们将整合预测计算模型和高质量的基于细胞的测量,以准确模拟 KRAS 驱动的肺癌中的自噬过程。我们预计我们的模型将有助于确定针对自噬的最有效的治疗策略。具体目标#1:验证核心自噬途径的机制模型,以预测有效抑制自噬的目标。为了验证该模型,我们测量了自噬的各个步骤如何响应生理和致癌应激源以及系统性 RNAi 扰动,我们建议调整模型以与定量数据保持一致,并测试限速的预测。该框架将探讨以下步骤。
自噬可能是由双稳态开关控制的,这是一个有趣的模型衍生假设,具有治疗相关性。作为该目标的一部分,我们将在野生型和突变型 KRAS 背景中鉴定有效的自噬抑制剂。 具体目标 #2:建立自噬与自噬之间关系的模型。细胞命运来测试 KRAS 驱动的肺癌的治疗预测。自噬模型将扩展到研究自噬通量与细胞存活和死亡之间的关系。这涉及定义数据集中测量的输入(信号读数)和输出(自噬通量、存活和死亡)之间的关系,我们将使用该模型和患者来源的细胞。
我们的合作研究将机制模型和细胞生物学专家聚集在一起,开展了一个与公共健康高度相关且有价值的项目,该项目被洛斯阿拉莫斯国家实验室使用。第二次世界大战以原子弹等复杂的核裂变装置为辅助,我们将使用模型来预测复杂的癌细胞行为,最终目标是为“抗癌战争”贡献宝贵的武器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William S Hlavacek其他文献
William S Hlavacek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William S Hlavacek', 18)}}的其他基金
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10399590 - 财政年份:2021
- 资助金额:
$ 51.56万 - 项目类别:
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10211871 - 财政年份:2021
- 资助金额:
$ 51.56万 - 项目类别:
System Dynamics of PD-1 Signaling in T Cells
T 细胞中 PD-1 信号传导的系统动力学
- 批准号:
10211871 - 财政年份:2021
- 资助金额:
$ 51.56万 - 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10558581 - 财政年份:2020
- 资助金额:
$ 51.56万 - 项目类别:
Multiscale Modeling to Optimize Inhibition of Oncogenic ERK Pathway Signaling
多尺度建模优化致癌 ERK 通路信号传导的抑制
- 批准号:
10337242 - 财政年份:2020
- 资助金额:
$ 51.56万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9547104 - 财政年份:2017
- 资助金额:
$ 51.56万 - 项目类别:
Computational Model of Autophagy-Mediated Survival in Chemoresistant Lung Cancer
自噬介导的化疗耐药肺癌生存的计算模型
- 批准号:
9769647 - 财政年份:2017
- 资助金额:
$ 51.56万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Core E: Outreach, Recruitment, and Engagement Core
核心 E:外展、招聘和参与核心
- 批准号:
10663301 - 财政年份:2021
- 资助金额:
$ 51.56万 - 项目类别:
Core E: Outreach, Recruitment, and Engagement Core
核心 E:外展、招聘和参与核心
- 批准号:
10663301 - 财政年份:2021
- 资助金额:
$ 51.56万 - 项目类别: