An Engineered Robotic Plasma Array for Large Area Surface Decontamination
用于大面积表面净化的工程机器人等离子体阵列
基本信息
- 批准号:10194138
- 负责人:
- 金额:$ 53.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVActive LearningAdoptionAffectAirAnimalsAntiviral AgentsAntiviral ResponseAreaArgonAtmospheric PressureBiological AssayBiological SciencesCellsCharcoalChemicalsClinicalClostridium difficileCommunicable DiseasesComplexConsumptionContainmentCoronavirusCoronavirus InfectionsCoupledCrowdingDecontaminationDepositionDevicesDiseaseDisinfectantsDisinfectionEffectivenessEngineeringEnvironmentEnvironmental HazardsEquipmentExcisionFeline CalicivirusFloorGasesGeometryGoalsGovernmentHeadHealthHealth Care CostsHealth HazardsHealthcareHospitalsHourHumanHuman ResourcesInternshipsKnowledgeLaboratoriesMeasuresMedicalMentorsModelingMotionMurine hepatitis virusNitrogenNorovirusOutcomeOxygenOzonePaintPathway interactionsPlasmaPower SourcesPropertyPublic HealthPumpRecoveryReproduction sporesResearchResourcesRiskRobotRoboticsSamplingScanningScientistShapesSocietiesSolidStructureSuctionSurfaceSystemTechnologyTestingTimeTrainingUniversitiesVaccinesVacuumViralVirusair filtrationantimicrobialarmbasecostcost effectivedensitydesigngraduate studenthealth care settingshuman coronavirusimprovedinfection ratemeetingsmethicillin resistant Staphylococcus aureusmobile computingnew technologynovelnovel coronavirusoperationpathogenpathogenic bacteriapathogenic microbepathogenic virusprogramspublic health relevanceresponserobotic systemsuccesssummer researchtopical antiseptictransmission processundergraduate studentvisual controlwasting
项目摘要
Project Summary/Abstract
Surface contamination by Coronaviruses like SARS-CoV-2, and other pathogenic viruses and bacteria pose significant risks
for the spread of disease in medical facilities. This increases hospital labor costs for staff to constantly clean surfaces with
disinfectants to slow the spread of disease. Infectious hosts can shed SARS-CoV-2 and other pathogens that deposit on
solid surfaces and transmit disease to new hosts. This persistent transmission is exemplified by Coronaviruses, as they can
persist on surfaces for hours or days and remain infectious through casual physical contact. Among bacterial pathogens,
methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile (CDif, and many others) are known to spread
through contact with surfaces contaminated by cells or spores shed from infected hosts. While physical or chemical surface
treatments, such as topical antiseptics and air-filtration, can mitigate transmission, these treatments are not always practical
or compatible with the physical or chemical makeup of the treated surface. These treatments also consume vast quantities
of gloves, wipes, disinfectant chemicals, and time. An approach that reduces material consumption, while still compatible
with use around people, is required for hospitals and other clinical settings. Cold atmospheric-pressure plasma (CAP) has
been studied for its ability to inactivate bacterial pathogens on surfaces, but seldom examined for anti-viral effects. Further,
a clear implementation path for the treatment of large surface areas found in medical facilities has yet to be established. This
proposed research provides an engineering driven approach to transition CAP systems from laboratory settings to more
realistic applications in medical environments. The approach is supported by Specific Aim 1: Construct CAP-Arrays that
demonstrate rapid inactivation of Coronavirus and other microbial pathogen surface contaminants, and by Specific
Aim 2: Fully integrate a CAP-Array into a robotic system and demonstrate rapid inactivation of Coronavirus and
other pathogens over large areas and varieties of surfaces. This project will develop a large CAP-Array (10 cm x 10 cm)
deployed on a semiautonomous robotic system to enable rapid, cost-effective plasma treatment of large surface areas,
without the need for chemicals and with little risk to personnel. The CAP-Array will be tested on a variety of real-world
relevant surfaces, such as linoleum tile, painted drywall, and formica tabletops, for its ability to inactivate viruses such as
human and animal Coronaviruses (H229E, MHV) that provide good models for activity against SARS-CoV-2, and against
representative bacterial pathogens such as MRSA. The objectives of this proposal are to (1) demonstrate that CAP-
Array treatment can cause a 3-log reduction in pathogen viability in <5 s over a 100 cm2 area without scanning and
then (2) demonstrate that the CAP-Array-Robot system can be deployed to treat a 2500 cm2 surface in <125 s and
cause a 3-log reduction in pathogen viability. A workforce of engineering and biological science graduate and
undergraduate students will develop and test the CAP-Arrays, prepare viral and bacterial pathogen samples, and measure
pathogen viability after plasma treatment. The success of this project will lead to a new paradigm for robotic sanitizing
equipment useful in decontaminating surfaces in healthcare and other settings.
项目摘要/摘要
SARS-COV-2等冠状病毒以及其他致病病毒和细菌的表面污染构成了显着风险
疾病在医疗机构中的传播。这增加了员工不断清洁表面的医院劳动力成本
消毒剂减慢疾病的传播。传染性宿主可以脱落SARS-COV-2和其他沉积在上面的病原体
固体表面并将疾病传递给新宿主。这种持续的传播被冠状病毒示例,因为它们可以
在表面上持续数小时或几天,并通过随意的身体接触保持感染力。在细菌病原体中,
已知耐甲氧西林金黄色葡萄球菌(MRSA)和艰难梭菌(CDIF等)已知会蔓延
通过与受感染宿主脱落的细胞或孢子污染的表面接触。而物理或化学表面
局部防腐剂和空气过滤等治疗方法可以减轻传播,这些处理并不总是实用的
或与处理表面的物理或化学构成兼容。这些治疗方法还消耗大量
手套,湿巾,消毒化学物质和时间。一种减少材料消耗的方法,而仍然兼容
使用周围的人使用,是医院和其他临床环境所必需的。冷大气压血浆(CAP)具有
研究了其在表面上灭活细菌病原体的能力,但很少检查抗病毒作用。更远,
尚未确定在医疗设施中发现的大型表面积的明确实施路径。这
拟议的研究提供了一种以工程为驱动的方法,用于从实验室环境到更多的过渡上限系统
在医疗环境中的现实应用。该方法得到了特定的目标1:构造上限阵列的支持
证明冠状病毒和其他微生物病原体表面污染物的快速失活,并通过特定
AIM 2:将Cap-array完全整合到机器人系统中,并显示出冠状病毒的快速失活
大面积和各种表面上的其他病原体。该项目将开发一个大型阵列(10厘米x 10厘米)
部署在半自主的机器人系统上,以实现大型表面积的快速,具有成本效益的等离子体处理,
无需化学物质,对人员的风险很小。上限阵列将在各种现实世界中进行测试
相关表面,例如油毡瓷砖,涂有干墙和formica桌面,因为它能够使病毒灭活(例如
人类和动物冠状病毒(H229E,MHV)为针对SARS-COV-2的活动提供了良好的模型,并反对
代表性细菌病原体,例如MRSA。该提议的目标是(1)证明cap-
阵列处理可导致在100 cm2区域<5 s的病原体生存能力降低3杆,而无需扫描和
然后(2)证明可以部署Cap-array-Robot系统以处理<125 s的2500 cm2表面
导致病原体生存能力降低3杆。工程和生物科学毕业生的劳动力
本科生将开发和测试上限阵列,准备病毒和细菌病原体样本,并测量
血浆治疗后的病原体生存能力。该项目的成功将导致机器人消毒的新范式
设备可用于对医疗保健和其他环境中的表面进行衰减。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jim Browning其他文献
Jim Browning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jim Browning', 18)}}的其他基金
相似国自然基金
企业领导者积极心理优势的识别、效应及机制:基于追随者视角的研究
- 批准号:71872117
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
积极背景刺激影响学习记忆的认知神经机制
- 批准号:31470980
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
大规模垃圾邮件过滤中的集成化SVM增量学习机制研究
- 批准号:60970081
- 批准年份:2009
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
- 批准号:
10663642 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
Combining sources of information to improve HIV pre-exposure prophylaxis
结合信息来源改善艾滋病毒暴露前预防
- 批准号:
10700193 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别:
Enhancing robotic head and neck surgical skills using stimulated simulation
使用刺激模拟增强机器人头颈手术技能
- 批准号:
10586874 - 财政年份:2023
- 资助金额:
$ 53.07万 - 项目类别: