Rapid Structure-Function MRI of the Lung for Post-COVID-19 Management
用于 COVID-19 后管理的肺部快速结构功能 MRI
基本信息
- 批准号:10181576
- 负责人:
- 金额:$ 37.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-03 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D Imaging4D MRIAdult Respiratory Distress SyndromeAffectAirAnatomyBreathingCOVID-19COVID-19 monitoringCOVID-19 pandemicCOVID-19 patientCaringChronicClinicalContrast MediaDevelopmentDiagnosticDimensionsDiseaseEarly identificationEconomic BurdenEnsureEvaluationFoundationsFour-dimensionalGoldHealthcareHeterogeneityImageImaging TechniquesIncidenceInflammationInvestigationIonizing radiationLeadLongitudinal StudiesLungLung CapacityLung diseasesMagnetic Resonance ImagingMeasuresMethodsMorbidity - disease rateMotionOutcomePatientsPerformancePlethysmographyPrevalenceProtocols documentationPublic HealthPulmonary FibrosisPulmonary function testsRadialRadiationRadiation exposureRecording of previous eventsResearchResidual stateResolutionRespiratory FailureRiskScanningSocietiesSpirometryStructural defectStructureTimeUnited StatesVariantViral PneumoniaX-Ray Computed Tomographybasecare burdenchest computed tomographyclinical imagingcoronavirus diseasedeep learningdisease heterogeneityimage reconstructionimaging modalityinsightlung basal segmentlung developmentlung imaginglung injurylung lobelung volumenovelpreventpulmonary functionpulmonary function declinerapid techniquerespiratorysoft tissueventilationvolunteer
项目摘要
Project Summary
The pandemic of coronavirus disease 2019 (COVID-19) has presented an unprecedented crisis and challenge
to public health, with tremendous health care and economic burden to our society. Given the high morbidity of
this new disease and increasing findings on COVID-associated complications, it has emerged as an important
and urgent clinical need to investigate the sequelae in patients recovered from COVID-19 (post-COVID patients),
particularly with respect to residual long-term lung damage such as post-COVID decline of pulmonary function
and/or development of lung structure abnormality. This will ensure that the long-term outcomes of post-COVID
patients can be studied, better understood, and properly managed. At present, Computed Tomography (CT) is
the gold standard for imaging lung anatomy, but its radiation burden precludes frequent longitudinal evaluations.
Pulmonary function is currently evaluated by spirometry or plethysmography, which provide global measures of
function but this is inadequate for assessing the extent of disease heterogeneity. The overarching aim of this
application is to develop novel rapid free-breathing four-dimensional (4D=3D+motion) lung MRI techniques that
will enable frequent evaluation of lung anatomy and function in the longitudinal follow-ups of post-COVID patients.
These new methods will be based on a combination of compressed sensing and golden-angle radial acquisition,
with incorporation of the latest advances in deep learning, which are all pioneered by our research team.
Specifically, we propose to develop, optimize and evaluate a 10-minute free-breathing lung MRI protocol that
will enable one-stop-shop characterization of whole lung anatomy and spatially-resolved pulmonary function
without administration of contrast media. The overall hypothesis is that the proposed 4D MRI techniques can
serve as a potential radiation-free alternative to CT for longitudinal evaluation of lung structure change and a
better alternative to spirometry for deriving regional function parameters that could provide additional novel
insights into the heterogeneity of lung ventilation and associated lung diseases. Our proposal includes the
following three specific aims: (i) development of motion-resolved 4D UTE-MRI (MRI with ultra-shot echo times)
for submillimeter resolution free-breathing whole-lung imaging, (ii) development of deep breathing-based 4D
UTE-MRI for deriving global/regional pulmonary function parameters, and (iii) development of deep learning-
based lung segmentation for efficient and automated estimation of pulmonary function parameters. Successful
completion of this project will deliver non-invasive, non-contrast-enhanced, and free-breathing 4D MRI
techniques for rapid assessment of lung anatomy and pulmonary function. Given the overwhelming prevalence
of COVID-19 and the overall cumulative incidence in the United States, our novel imaging methods would provide
a unique opportunity to augment post-COVID care, particularly for identifying COVID-19-induced lung fibrosis in
a timely manner and for studying the longitudinal changes of lung anatomy and global/regional pulmonary
function. These methods could also be extended for evaluation of other pulmonary diseases.
项目摘要
2019年冠状病毒病的大流行(Covid-19)提出了前所未有的危机和挑战
为公共卫生,给我们的社会带来巨大的医疗保健和经济负担。考虑到高发病
这种新疾病和关于共同相关并发症的发现的增加,它已成为重要的
紧急临床需要调查从1900(旋转后患者)中回收的患者的后遗症,
特别是关于残留的长期肺损伤,例如肺部功能后旋转后下降
和/或肺结构异常的发展。这将确保兴建后的长期结果
可以研究,更好地理解和适当管理患者。目前,计算机断层扫描(CT)为
成像肺解剖结构的金标准,但其辐射负担排除了频繁的纵向评估。
目前,通过肺活量法或散布物学评估肺功能
功能但这是评估疾病异质性程度的不足。总体目的
应用是开发新型的快速自由呼吸四维(4D = 3D+运动)肺MRI技术
将在旋转后患者的纵向随访中频繁评估肺解剖结构和功能。
这些新方法将基于压缩感应和金角径向采集的组合,
随着深度学习的最新进展,我们的研究团队都率先进行了启示。
具体而言,我们建议开发,优化和评估10分钟的自由呼吸肺MRI协议,该方案
将使整个肺解剖结构和空间分辨的肺功能一站式表征
没有对比媒体的管理。总体假设是提出的4D MRI技术可以
作为CT的潜在无辐射替代品,用于纵向评估肺结构变化和A
更好地替代肺活量测定法,以推导可提供其他新颖的区域功能参数
洞察肺通风和相关肺部疾病的异质性。我们的建议包括
以下三个具体目的:(i)运动分辨的4D UTE-MRI(具有超射击回波时间的MRI)的发展
对于亚毫米分辨率自由呼吸全肺成像,(ii)基于深呼吸的4D开发
用于得出全球/区域肺功能参数的UTE-MRI,以及(iii)深度学习的发展 -
基于肺部功能参数的有效和自动估计的基于肺部分割。成功的
该项目的完成将提供非侵入性,非对抗增强和自由呼吸4D MRI
快速评估肺解剖和肺功能的技术。考虑到压倒性的流行
covid-19和美国的整体累积发生率,我们的新成像方法将提供
增强杂化后护理的独特机会,特别是用于识别COVID-19诱导的肺纤维化
及时的方式,并研究肺解剖学和全球/区域肺的纵向变化
功能。这些方法也可以扩展以评估其他肺部疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Feng其他文献
A Novel Web Service QoS Collaborative Prediction Approach with Biased Baseline
一种新颖的带偏差基线的 Web 服务 QoS 协作预测方法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Shen Limin;Chen Zhen;Li Feng - 通讯作者:
Li Feng
Li Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Feng', 18)}}的其他基金
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10831643 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
- 批准号:
10432272 - 财政年份:2022
- 资助金额:
$ 37.04万 - 项目类别:
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
- 批准号:
10831651 - 财政年份:2022
- 资助金额:
$ 37.04万 - 项目类别:
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10430267 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10297597 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
Rapid Structure-Function MRI of the Lung for Post-COVID-19 Management
用于 COVID-19 后管理的肺部快速结构功能 MRI
- 批准号:
10831646 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
相似国自然基金
融合闪烁光刺激与4D定量OCTA的视网膜功能成像技术与应用研究
- 批准号:62075189
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
复杂背景中行人目标的4D光场视觉感知机制与识别方法研究
- 批准号:61906133
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于高光谱-可见光成像的水稻叶绿素4D表型提取方法研究
- 批准号:31800305
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
- 批准号:81871437
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
4D成像技术研究及其在龙门山断裂带介质演化中的应用
- 批准号:41674090
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
- 批准号:
10571411 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
A computational approach combining 4D Flow and CFD for improved determination of cerebral hemodynamics
结合 4D Flow 和 CFD 的计算方法可改进脑血流动力学测定
- 批准号:
10581283 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
- 批准号:
10735953 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Non-invasive hemodynamic and biomechanic imaging methods for early risk prediction in aortic dissection
用于主动脉夹层早期风险预测的非侵入性血流动力学和生物力学成像方法
- 批准号:
10716472 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别: