4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
基本信息
- 批准号:10735953
- 负责人:
- 金额:$ 23.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D MRIAdoptedAffectAnatomyAortic DiseasesAortic Valve StenosisAreaBreathingCatheterizationCessation of lifeChestChronicClassificationClinicalCorrelation StudiesDataDiagnosticDiagnostic ProcedureDobutamineDobutamine Stress EchocardiographyDoppler EchocardiographyDropsEchocardiographyEnrollmentEquationGoalsHeartHeart Valve DiseasesHeart failureImageLearningLeft Ventricular Ejection FractionLiquid substanceMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsModalityMorphologic artifactsNatureNoiseOperative Surgical ProceduresPatientsProtocols documentationRestRiskSafetyScanningSeveritiesSeverity of illnessStratificationStressSubgroupSurvival RateSymptomsSyncopeTherapeutic EmbolizationTrainingWorkadverse outcomeaging populationanatomic imagingaortic valveaortic valve disorderaortic valve replacementdata spacedeep learninghemodynamicshuman subjectimaging modalityimprovedpressurerespiratorysimulationtomographyultrasound
项目摘要
Degenerative aortic stenosis is a progressive valvular heart disease affecting the aging population and when
hemodynamically significant is associated with serious adverse outcomes, such as heart failure, syncope, and
death. Although, symptomatic classical severe aortic stenosis (AS), wherein aortic valve anatomical or effective
area is ≤ 1.0 𝑐𝑚2 and mean gradient ≥ 40 mmHg raises no diagnostic dilemma, patients with low gradient aortic
stenosis (i.e., mean gradient < 40 mmHg) that may be severe (i.e., aortic valve area ≤ 1.0 𝑐𝑚2) remain a
challenge for determining the true severity of aortic stenosis and present a significant unmet clinical need. The
discordance between aortic valve area of ≤ 1.0 𝑐𝑚2 and mean gradient < 40 mmHg is encountered in as many
as 30 to 40% of patients with aortic valve area ≤ 1.0 𝑐𝑚2 by transthoracic echocardiography (TTE). In patients
with these discordant findings, the true severity is uncertain and have led to the use of dobutamine stress
echocardiography (DSE). Based on DSE, one can classify the potentially severe low-gradient subjects into 4
distinct subgroups a) Low gradient severe aortic stenosis (LGS): aortic valve area of ≤ 1.0 𝑐𝑚2 and a mean
gradient of ≥ 40 mmHg with DSE. b) Low gradient pseudo-severe aortic stenosis (LGPS): aortic valve area of >
1.0 𝑐𝑚2 and a mean gradient of < 40 mmHg with DSE. c) Low gradient indeterminate aortic stenosis severity
(LGI): aortic valve area of ≤ 1.0 𝑐𝑚2 and a mean gradient of < 40 mmHg with DSE. d) Finally, aortic valve area
of > 1.0 𝑐𝑚2 and a mean gradient of ≥ 40 mmHg with DSE are classified as moderate or less severe aortic
stenosis (LSA). Nearly one-third of patients classified as LGS are classified as LGPS with DSE (6). Further,
compounding the concern in patients classified as LGPS, LGI, LSA is that they often manifest with symptoms
potentially attributable to severe AS suggesting an initial misclassification perhaps due to measurement errors.
Compared to echo, with MRI, the velocities can be measured in all 3D directions and due to its tomographic
nature, no geometric assumptions are required. The hypothesis of the study is that our planned CMR methods
which we will develop based on previous work will be able to better stratify these AS subjects. Our specific aims
are: 1) We will develop efficient rest and dobutamine stress 4D Spiral flow imaging protocols based on k-space
dependent respiratory gating. 2) We have recently developed a Deep Learning framework which based on
Computational Fluid Dynamics (CFD) simulations of training data learns to directly map velocities to pressures.
This will be adapted to measure the transvalvular pressure gradients (TVPG) in human subjects and validated.
3) In 40 subjects with potentially severe low gradient AS (10 in each of the LGS, LGPS, LGI, LSA), a TTE study,
and a CMR study will be performed both at rest and under dobutamine stress. To validate, TVPG will be
measured with cath in a group with n=10 of moderate AS (MAS) subjects undergoing cath for other purposes.
This group will also undergo TTE and CMR studies. Subjects with severe AS were not selected for cath for safety
reasons. Classification across modalities, flow, velocity, pressure, and orifice area will be statistically correlated.
退行性主动脉瓣狭窄是一种进行性瓣膜性心脏病,影响人口老龄化,当
血流动力学显着与严重的不良后果相关,例如心力衰竭、晕厥和
虽然,有症状的典型严重主动脉瓣狭窄(AS),主动脉瓣解剖还是有效的。
面积 ≤ 1.0 𝑐𝑚2 且平均梯度 ≥ 40 mmHg 不会引起诊断困境,低梯度主动脉患者
可能严重的狭窄(即平均梯度 < 40 mmHg)(即主动脉瓣面积 ≤ 1.0 𝑐𝑚2)仍然是
确定主动脉瓣狭窄的真实严重程度是一项挑战,并且提出了重大的未满足的临床需求。
主动脉瓣面积 ≤ 1.0 𝑐𝑚2 与平均梯度 < 40 mmHg 之间的不一致在许多情况下都会遇到
经胸超声心动图(TTE)显示,30% 至 40% 的患者主动脉瓣面积 ≤ 1.0 𝑐𝑚2。
由于这些不一致的发现,真正的严重程度是不确定的,并导致使用多巴酚丁胺应激
超声心动图(DSE) 基于DSE,可以将潜在严重的低梯度受试者分为4 类。
不同的亚组 a) 低梯度严重主动脉瓣狭窄 (LGS):主动脉瓣面积 ≤ 1.0 𝑐𝑚2 且平均值
DSE 梯度≥ 40 mmHg b) 低梯度假性重度主动脉瓣狭窄 (LGPS):主动脉瓣面积 >
1.0 𝑐𝑚2 且 DSE 平均梯度 < 40 mmHg c) 低梯度不确定主动脉瓣狭窄严重程度。
(LGI):主动脉瓣面积 ≤ 1.0 𝑐𝑚2,DSE 平均梯度 < 40 mmHg d) 最后,主动脉瓣面积。
DSE 的 > 1.0 𝑐𝑚2 且平均梯度 ≥ 40 mmHg 被归类为中度或较轻的主动脉疾病
近三分之一被分类为 LGS 的患者被分类为具有 DSE 的 LGPS (6)。
对 LGPS、LGI、LSA 患者更令人担忧的是,他们经常表现出症状
可能归因于严重的 AS,表明最初的错误分类可能是由于测量误差造成的。
与回波相比,MRI 可以在所有 3D 方向上测量速度,并且由于其断层扫描
自然,不需要几何假设,该研究的假设是我们计划的 CMR 方法。
我们将在以前的工作基础上开发的,将能够更好地对这些 AS 主题进行分层。
是:1)我们将开发基于k空间的高效休息和多巴酚丁胺应激4D螺旋流成像协议
2)我们最近开发了一个基于呼吸门控的深度学习框架。
训练数据的计算流体动力学 (CFD) 模拟学习如何将速度直接映射到压力。
这将适用于测量人类受试者的跨瓣膜压力梯度(TVPG)并进行验证。
3) 在 40 名可能患有严重低梯度 AS 的受试者中(LGS、LGPS、LGI、LSA 各 10 名),一项 TTE 研究,
为了验证 TVPG,将在休息和多巴酚丁胺应激下进行 CMR 研究。
在一组 n=10 的中度 AS (MAS) 受试者中进行导管测量,这些受试者因其他目的而接受导管治疗。
该组还将接受 TTE 和 CMR 研究,出于安全考虑,未选择患有严重 AS 的受试者进行导管治疗。
不同模式、流量、速度、压力和孔口面积的分类将相互关联。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
4Dflow-VP-Net: A deep convolutional neural network for noninvasive estimation of relative pressures in stenotic flows from 4D flow MRI.
- DOI:10.1002/mrm.29791
- 发表时间:2023-11
- 期刊:
- 影响因子:3.3
- 作者:Nath, Ruponti;Kazemi, Amirkhosro;Callahan, Sean;Stoddard, Marcus F.;Amini, Amir A.
- 通讯作者:Amini, Amir A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AMIR A AMINI其他文献
AMIR A AMINI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AMIR A AMINI', 18)}}的其他基金
4-DIMENSIONAL LV TISSUE TRACKING IN CAD FROM TAGGED MRI
通过标记 MRI 在 CAD 中进行 4 维左心室组织追踪
- 批准号:
6402793 - 财政年份:2000
- 资助金额:
$ 23.48万 - 项目类别:
4-DIMENSIONAL LV TISSUE TRACKING IN CAD FROM TAGGED MRI
通过标记 MRI 在 CAD 中进行 4 维左心室组织追踪
- 批准号:
6197519 - 财政年份:2000
- 资助金额:
$ 23.48万 - 项目类别:
4-DIMENSIONAL LV TISSUE TRACKING IN CAD FROM TAGGED MRI
通过标记 MRI 在 CAD 中进行 4 维左心室组织追踪
- 批准号:
6813757 - 财政年份:2000
- 资助金额:
$ 23.48万 - 项目类别:
4-DIMENSIONAL LV TISSUE TRACKING IN CAD FROM TAGGED MRI
通过标记 MRI 在 CAD 中进行 4 维左心室组织追踪
- 批准号:
6527304 - 财政年份:2000
- 资助金额:
$ 23.48万 - 项目类别:
METHODS FOR ANALYSIS OF TAGGED MR CARDIAC IMAGES
标记 MR 心脏图像的分析方法
- 批准号:
6184044 - 财政年份:1998
- 资助金额:
$ 23.48万 - 项目类别:
METHODS FOR ANALYSIS OF TAGGED MR CARDIAC IMAGES
标记 MR 心脏图像的分析方法
- 批准号:
2471547 - 财政年份:1998
- 资助金额:
$ 23.48万 - 项目类别:
METHODS FOR ANALYSIS OF TAGGED MR CARDIAC IMAGES
标记 MR 心脏图像的分析方法
- 批准号:
6389619 - 财政年份:1998
- 资助金额:
$ 23.48万 - 项目类别:
METHODS FOR ANALYSIS OF TAGGED MR CARDIAC IMAGES
标记 MR 心脏图像的分析方法
- 批准号:
6043944 - 财政年份:1998
- 资助金额:
$ 23.48万 - 项目类别:
相似国自然基金
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
- 批准号:82071991
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
- 批准号:81801139
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
4D PC-MRI血流动力学参数与主动脉夹层假腔血栓化的关系及模拟预测研究
- 批准号:81770474
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
基于4D血流MRI成像的左心房室流场变化介导的炎症反应在房颤心肌纤维化中的始动作用及机制研究
- 批准号:81601462
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Personalized Motion Management for Truly 4D Lung Radiotherapy
真正 4D 肺部放射治疗的个性化运动管理
- 批准号:
10452607 - 财政年份:2021
- 资助金额:
$ 23.48万 - 项目类别:
Next-Generation Cardiovascular MRI powered by Artificial Intelligence
由人工智能驱动的下一代心血管 MRI
- 批准号:
10226541 - 财政年份:2021
- 资助金额:
$ 23.48万 - 项目类别:
Next-Generation Cardiovascular MRI powered by Artificial Intelligence
由人工智能驱动的下一代心血管 MRI
- 批准号:
10385754 - 财政年份:2021
- 资助金额:
$ 23.48万 - 项目类别:
Personalized Motion Management for Truly 4D Lung Radiotherapy
真正 4D 肺部放射治疗的个性化运动管理
- 批准号:
10274050 - 财政年份:2021
- 资助金额:
$ 23.48万 - 项目类别:
A Study Evaluating the Safety and Efficacy of Second-Generation Tissue Engineered Vascular Grafts (TEVG2)
评估第二代组织工程血管移植物 (TEVG2) 安全性和有效性的研究
- 批准号:
10363610 - 财政年份:2019
- 资助金额:
$ 23.48万 - 项目类别: