Neurocomputational Mechanisms for Addiction Heterogeneity, Impulsivity and Perseverance
成瘾异质性、冲动性和毅力的神经计算机制
基本信息
- 批准号:9980853
- 负责人:
- 金额:$ 21.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeAmericanAnimalsAreaBehaviorBehavior ControlBehavioralBrainCause of DeathConsumptionCorpus striatum structureDataDecision MakingDevelopmentDiagnosisDimensionsDiseaseDopamineDorsalDrug AddictionDrug ExposureDrug usageEducationEquilibriumExhibitsFeedbackFunctional Magnetic Resonance ImagingGenderGoalsHabitsHeterogeneityHumanImpulsive BehaviorImpulsivityIndividualIndividual DifferencesKnowledgeLearningLiteratureMeasuresModelingMotorNeurocognitiveNeurotransmittersNicotineNicotine DependenceNicotine Use DisorderOutcomePharmaceutical PreparationsPhasePhenotypePhysiologicalPlayPrefrontal CortexProcessPsychiatryResearchResponse to stimulus physiologyRoleSeveritiesSignal TransductionSubstance Use DisorderSymptomsSystemTechniquesTestingTobacco smoking behaviorVentral StriatumWorkaddictionbehavioral phenotypingcausal modelcigarette smokeclinical heterogeneitycohortcomputer frameworkgoal oriented behaviorindexingindividualized medicineneuromechanismnicotine usenon-smokingnovelpredictive modelingrelating to nervous systemresponsesimulationsymptomatologytheories
项目摘要
Project Summary
Studies in substance use disorders (SUDs) have identified a profound inter-subject variability, where a wide
variety of multifaceted, dissociable behavioral phenotypes are correlated with addiction development and
symptomatology. Even apparently incompatible behavioral expressions, such as impulsivity and inelasticity
or perseverance, have been found to co-occur in SUDs and to signal similar addiction vulnerabilities.
However, few neural or computational mechanisms have been described so far to account for such
seemingly contradicting findings and individual differences, thus hindering the development of
individualized diagnosis and treatment. The overarching goal of this project is to validate a new model of
addiction using Nicotine Use Disorder (NUD) as test case. We propose to expand on previous theories to
provide a more comprehensive neuro-computational framework of addiction that includes phenotypic
variability and co-occurrence of impulsivity and perseverance, characterized in terms of effective
connectivity in cortico-striatal circuits. The scientific premise for this project is grounded in decades of
human and non-human animal work which have demonstrated the roles played in addiction by the ventral
and dorsal corticostriatal systems, respectively responsible for goal oriented and habitual behavior. The
simulation of the neural dynamics in these two circuits has allowed our model to describe addiction on two
independent dimensions. On a first dimension, addictive drugs such as nicotine result in increased circuit
gain and state transition stability in both ventral and dorsal cortico-striatal systems, amplifying preliminary
evidence (impulsivity) and making choice selections become inelastic due to a feedback effect
(perseverance). On a second dimension, which is not necessarily affected by drug exposure, our models
converge in suggesting that this gain-related over-stability of both cortico-striatal circuits is aggravated by
the presence of a “dominance” of either of the two circuit over the other. In aim 1, we will validate the model
prediction that high circuit gain predicts greater behavioral impulsivity and perseverance. In aim 2 we will
validate the model prediction that the balance between the two cortico-striatal circuits predicts drug use
severity. Circuit gain and circuit balance will be tested in NUD individuals (n=32) and healthy controls
(n=32), tasked with decision-making tasks. Circuit gain will be measured in terms of effective connectivity
between cortical and striatal areas, within each circuit, and estimated with the use of Dynamic Causal
Modelling (DCM). Circuit balance will be estimated using DCM for the ventro-dorsal effective connectivity,
to establish dominance on a gradient. This proof-of-concept project can provide a new computational
framework for drug addiction, and a quantitative model to characterize clinical heterogeneity, eventually
informing individualized treatments.
项目摘要
对物质使用障碍(SUD)的研究已经确定了深远的受试者间变异性,其中很广
多种多样,可分离的行为表型与成瘾的发展和
症状学。即使显然是不兼容的行为表达,例如冲动性和非弹性
或毅力,已经发现在SUD中同时发生并发出类似的成瘾漏洞。
但是,到目前为止,很少有神经或计算机制可以解决此类
看似与发现和个体差异相矛盾,从而阻碍了
个性化的诊断和治疗。该项目的总体目标是验证一种新的模型
使用尼古丁使用障碍(NUD)作为测试案例的成瘾。我们建议将以前的理论扩展到
提供更全面的神经计算成瘾框架,包括表型
冲动性和毅力的可变性以及以有效为特征的
皮质纹状体电路中的连通性。该项目的科学前提是基于数十年的
人类和非人类动物作品已经证明了腹侧的成瘾作用
和背皮层系统,分别负责以目标为导向和习惯行为。
这两个电路中神经动力学的模拟使我们的模型描述了两个上瘾
独立的维度。在第一个维度上,其他药物(例如尼古丁)导致电路增加
腹侧和背皮纹状体系统中的增益和状态过渡稳定性,放大初步
由于反馈效果,证据(冲动)并使选择选择变得无弹性
(毅力)。在不一定受药物暴露影响的第二维度上,我们的模型
提示这两个皮质纹状体电路的这种与增益相关的过度稳定性汇总。
两个电路在另一个电路上存在“优势”。在AIM 1中,我们将验证模型
预测高电路获得预测更大的行为冲动和毅力。在目标2中,我们将
验证模型预测,即两个皮质 - 纹状体回路之间的平衡预测药物使用
严重程度。电路增益和电路平衡将在裸体个体(n = 32)和健康对照中进行测试
(n = 32),负责决策任务。电路增益将以有效的连通性来衡量
在每个电路内的皮质和纹状体区域之间,并使用动态因果估计
建模(DCM)。将使用DCM估算电路平衡的腹侧有效连通性,
在梯度上建立优势。该概念证明项目可以提供新的计算
药物成瘾的框架和定量模型以表征临床异质性,最终
告知个性化治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaosi Gu其他文献
Xiaosi Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaosi Gu', 18)}}的其他基金
Neural, computational and behavioral characterization of dynamic social behavior in borderline and avoidant personality disorder
边缘型和回避型人格障碍动态社会行为的神经、计算和行为特征
- 批准号:
10579939 - 财政年份:2021
- 资助金额:
$ 21.19万 - 项目类别:
Neural, computational and behavioral characterization of dynamic social behavior in borderline and avoidant personality disorder
边缘型和回避型人格障碍动态社会行为的神经、计算和行为特征
- 批准号:
10400100 - 财政年份:2021
- 资助金额:
$ 21.19万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10059060 - 财政年份:2020
- 资助金额:
$ 21.19万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10428547 - 财政年份:2020
- 资助金额:
$ 21.19万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10640947 - 财政年份:2020
- 资助金额:
$ 21.19万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10227238 - 财政年份:2020
- 资助金额:
$ 21.19万 - 项目类别:
Neurocomputational Mechanisms for Addiction Heterogeneity, Impulsivity and Perseverance
成瘾异质性、冲动性和毅力的神经计算机制
- 批准号:
9809076 - 财政年份:2019
- 资助金额:
$ 21.19万 - 项目类别:
Computational and Neural Modeling of Cue Reactivity in Addiction
成瘾中提示反应的计算和神经建模
- 批准号:
10197070 - 财政年份:2018
- 资助金额:
$ 21.19万 - 项目类别:
Computational and Neural Modeling of Cue Reactivity in Addiction
成瘾中提示反应的计算和神经建模
- 批准号:
9769690 - 财政年份:2018
- 资助金额:
$ 21.19万 - 项目类别:
Computational and Neural Modeling of Cue Reactivity in Addiction
成瘾中提示反应的计算和神经建模
- 批准号:
10434013 - 财政年份:2018
- 资助金额:
$ 21.19万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 21.19万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Illuminating neurodegenerative tauopathy from somatic genomic landscapes of single human brain cells
从单个人脑细胞的体细胞基因组景观中阐明神经退行性 tau 病
- 批准号:
10686570 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Unraveling the synaptic and circuit mechanisms underlying a plasticity-driving instructive signal
揭示可塑性驱动指导信号背后的突触和电路机制
- 批准号:
10686592 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Hospice exposure and utilization among older African Americans with ADRD and their decisional support persons
患有 ADRD 的老年非洲裔美国人及其决策支持人员的临终关怀暴露和利用
- 批准号:
10679558 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别: