Mechanisms of Genome Integrity

基因组完整性的机制

基本信息

  • 批准号:
    9923696
  • 负责人:
  • 金额:
    $ 51.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Our chromosomes are continually bombarded with a variety of insults, resulting in damage that must be repaired. By necessity, cells have evolved mechanisms to detect and repair broken strands of DNA, thereby preventing loss of important genetic information. Double-stranded DNA breaks (DSBs) are a type of damage that led to particularly disastrous outcomes. If not corrected, DSBs can lead to gross chromosomal rearrangements, which are the hallmark of all forms of cancer. Surprisingly, DNA replication is the primary source of DSBs. Homologous recombination (HR) is a highly conserved pathway that cells can use to repair DSBs, and HR is necessary to prevent and repair the damage that arises during DNA replication. When a DSB occurs, the DNA ends are processed to generate 3' single-strand DNA (ssDNA) overhangs. The ssDNA ends then pair with homologous sequence elsewhere in the genome, and the missing DNA sequence is replaced using the homologous DNA as a template for replication. Finally, the replicated intermediate is resolved, regenerating the continuity of the broken DNA. While seemingly simple, HR requires the coordinated action of a complex repertoire of proteins, which are responsible for sensing damage, recruiting essential factors, and processing and repairing the damaged DNA. The consequences of disrupting HR are devastating. For example, mutations in the Rad51 recombinase are embryonic lethal in mice, and mutations in human Rad51 are linked to breast cancers. In addition, defects in BRCA2 account for at least 5% of all breast cancers and also confer a genetic predisposition to ovarian cancer. BRCA2 is thought to help regulate HR, and loss of this regulation may be the reason why this gene is linked to hereditary cancers. Major new discoveries will be necessary to fully understand the mechanistic basis for these outcomes. Our overall research program is focused on understanding how (i) proteins sense and respond to damaged DNA, (ii) how DNA damage is repaired, (iii) how DNA replication can lead to damage, and (iv) how replication and recombination are linked. To help address these problems we have developed unique technologies that allow us to directly visualize hundreds of individual molecules using optical microscopy, which enables us to monitor the spatial and temporal progression of DNA repair and DNA replication in real-time at the single-molecule level. Using this approach we seek to define the fundamental mechanisms that our cells use to replicate and repair DNA, with the long-term goal of understanding how errors during these processes can lead to chromosomal rearrangements.
 描述(由申请人提供):我们的染色体不断受到各种损伤的轰炸,导致必须修复的损伤。细胞必须进化出检测和修复断裂 DNA 链的机制,从而防止重要遗传信息的丢失。双链 DNA 断裂 (DSB) 是一种会导致特别灾难性后果的损伤,如果不加以纠正,DSB 可能会导致严重的染色体重排,这是所有形式的染色体重排的标志。令人惊讶的是,DNA 复制是 DSB 的主要来源。同源重组 (HR) 是细胞用来修复 DSB 的高度保守途径,并且 HR 对于预防和修复 DNA 复制过程中出现的损伤是必要的。发生这种情况时,DNA 末端会被加工生成 3' 单链 DNA (ssDNA) 突出端,然后 ssDNA 末端与基因组中其他位置的同源序列配对,并使用 ssDNA 序列替换缺失的 DNA 序列。最后,复制的中间体被解析,恢复断裂 DNA 的连续性,虽然看似简单,但 HR 需要复杂的蛋白质库的协调作用,这些蛋白质负责感知损伤、招募重要因子。 ,以及处理和修复受损的 DNA 的后果是毁灭性的,例如,Rad51 重组酶的突变对小鼠来说是致命的,而人类 Rad51 的突变与乳腺癌有关。 BRCA2 至少占所有乳腺癌的 5%,而且 BRCA2 被认为有助于调节 HR,而这种调节的丧失可能是该基因与遗传性癌症相关的原因。为了充分了解这些结果的机制基础,我们的整体研究计划的重点是了解(i)蛋白质如何感知和响应受损的 DNA,(ii)DNA 损伤如何修复,(iii)DNA 复制如何导致。到损伤,以及(iv)复制和重组如何联系起来,我们开发了独特的技术,使我们能够使用光学显微镜直接可视化数百个单个分子,从而使我们能够监测 DNA 修复的空间和时间进程。使用这种方法,我们试图定义细胞用于复制和修复 DNA 的基本机制,长期目标是了解这些过程中的错误如何导致。染色体重排。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric C Greene其他文献

Eric C Greene的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric C Greene', 18)}}的其他基金

Protein purification instrumentation in support of single molecule studies of genome integrity
支持基因组完整性单分子研究的蛋白质纯化仪器
  • 批准号:
    10386035
  • 财政年份:
    2021
  • 资助金额:
    $ 51.06万
  • 项目类别:
Defining the contributions of BRCA1, BRCA2, and RAD52 to genome stability
定义 BRCA1、BRCA2 和 RAD52 对基因组稳定性的贡献
  • 批准号:
    9883062
  • 财政年份:
    2020
  • 资助金额:
    $ 51.06万
  • 项目类别:
Defining the contributions of BRCA1, BRCA2, and RAD52 to genome stability
定义 BRCA1、BRCA2 和 RAD52 对基因组稳定性的贡献
  • 批准号:
    10559685
  • 财政年份:
    2020
  • 资助金额:
    $ 51.06万
  • 项目类别:
Defining the contributions of BRCA1, BRCA2, and RAD52 to genome stability
定义 BRCA1、BRCA2 和 RAD52 对基因组稳定性的贡献
  • 批准号:
    10348151
  • 财政年份:
    2020
  • 资助金额:
    $ 51.06万
  • 项目类别:
Helicase regulation during homologous recombination
同源重组过程中解旋酶的调节
  • 批准号:
    10556346
  • 财政年份:
    2019
  • 资助金额:
    $ 51.06万
  • 项目类别:
Helicase regulation during homologous recombination
同源重组过程中解旋酶的调节
  • 批准号:
    10358504
  • 财政年份:
    2019
  • 资助金额:
    $ 51.06万
  • 项目类别:
Mechanisms of Genome Integrity
基因组完整性的机制
  • 批准号:
    10375574
  • 财政年份:
    2016
  • 资助金额:
    $ 51.06万
  • 项目类别:
Mechanisms of Genome Integrity
基因组完整性的机制
  • 批准号:
    10161895
  • 财政年份:
    2016
  • 资助金额:
    $ 51.06万
  • 项目类别:
Mechanisms of Genome Integrity
基因组完整性的机制
  • 批准号:
    9068448
  • 财政年份:
    2016
  • 资助金额:
    $ 51.06万
  • 项目类别:
Laser Scanning Imaging System in Support of Single-Molecule Studies of Genome Integrity
支持基因组完整性单分子研究的激光扫描成像系统
  • 批准号:
    10793020
  • 财政年份:
    2016
  • 资助金额:
    $ 51.06万
  • 项目类别:

相似国自然基金

DNA同源重组基因EXO1和BRCA2在早发性卵巢功能不全发病中的作用和致病机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
BRCA2基因新突变导致的甲基缺失引起高危家族卵巢/乳腺癌发生的机制研究
  • 批准号:
    81972444
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
中国家族性乳腺癌BRCA1/2基因大片段重排断裂位点鉴定及功能研究
  • 批准号:
    81772824
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
BRCA2基因肿瘤抑制新机制:抑制中心体过度复制
  • 批准号:
    30771110
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
BACP1-BRCA2相互作用及其有丝分裂调控的研究
  • 批准号:
    30470370
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Repair of DNA ends with adducts
用加合物修复 DNA 末端
  • 批准号:
    10587000
  • 财政年份:
    2023
  • 资助金额:
    $ 51.06万
  • 项目类别:
Mechanisms of Parp inhibitor-induced bone marrow toxicities
Parp 抑制剂诱导骨髓毒性的机制
  • 批准号:
    10637962
  • 财政年份:
    2023
  • 资助金额:
    $ 51.06万
  • 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
  • 批准号:
    10626281
  • 财政年份:
    2023
  • 资助金额:
    $ 51.06万
  • 项目类别:
Functional Characterization and Development of Therapeutic Paradigms for DNA Damage Repair (DDR)-deficient Lethal Prostate Cancer
DNA 损伤修复 (DDR) 缺陷的致死性前列腺癌的功能表征和治疗范例的开发
  • 批准号:
    10675929
  • 财政年份:
    2023
  • 资助金额:
    $ 51.06万
  • 项目类别:
Quantifying replication dynamics to predict clonal evolution and drug sensitivity in cancer cells using single-cell whole genome sequencing
使用单细胞全基因组测序量化复制动态以预测癌细胞的克隆进化和药物敏感性
  • 批准号:
    10603140
  • 财政年份:
    2023
  • 资助金额:
    $ 51.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了