Helicase regulation during homologous recombination
同源重组过程中解旋酶的调节
基本信息
- 批准号:10556346
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgingBARD1 geneBRCA1 geneBiochemicalBiomedical ResearchCancer BiologyCellsChromosomal RearrangementChromosomesClinicalComplexDNADNA Double Strand BreakDNA Repair PathwayDNA biosynthesisDNA metabolismDNA replication forkDNA strand breakDefectDependenceDiseaseEukaryotaEukaryotic CellExhibitsFundingFutureGenetic DiseasesGenetic RecombinationGenome StabilityGoalsHealthHomologous GeneHumanHuman BiologyHuman GenomeHydrolysisIndividualLinkMalignant NeoplasmsMediatingMicroscopyMolecularMolecular MotorsMutationNucleic AcidsNucleoproteinsOpticsOutcomePathway interactionsPatientsPlayPredispositionPremature aging syndromeProcessPropertyProteinsRAD52 geneRECQL5 geneReactionRecoveryRegulationResearchRoleSaccharomyces cerevisiaeSingle-Stranded DNASourceSpecificitySyndromeTestingVisualizationWorkcancer cellcancer therapycofactordesigngenetic informationgenetic regulatory proteingenome integrityhelicasehomologous recombinationhuman diseaseinhibitorinsightnew technologynucleic acid metabolismnucleoside triphosphatep53-binding protein 1paralogous genepresynapticpreventprotein complexrecombinaserepairedsingle moleculetargeted treatmenttherapeutic developmenttime usetool
项目摘要
Project Summary
Our chromosomes are continually bombarded with a variety of insults, resulting in damage that must be
repaired. By necessity, cells have evolved mechanisms to detect and repair broken strands of DNA,
thereby preventing loss of important genetic information. Double-stranded DNA breaks (DSBs) are a type
of damage that led to particularly disastrous outcomes. If not corrected, DSBs can lead to gross
chromosomal rearrangements, which are the hallmark of all forms of cancer. Indeed, defects in HR-
related proteins are associated with several severe genetic diseases. Patients with these diseases often
exhibit a strong predisposition for developing cancers due to a loss of genome integrity. Surprisingly,
DNA replication is the primary source of DSBs, and as a consequence rapidly growing cells are especially
dependent upon homologous DNA recombination for survival. This dependence upon homologous
recombination for the survival of rapidly growing cells highlights the potential for using recombination
inhibitors as highly selective cancer therapies. To fully exploit the clinical potential of homologous
recombination inhibitors it will be essential that we more fully understand the detail molecular
underpinnings of recombination and the proteins that are involved in regulating and controlling this
process.
To help better understand the molecular basis of homologous DNA recombination we have developed
powerful new experimental platforms that allow us to directly visualize hundreds of individual DNA
molecules at the single molecule level. We are utilizing these unique research tools to probe the
fundamental basis for protein-nucleic acid interactions, with emphasis placed upon understanding
reactions relevant to human biology and disease. Here we will assess how ATP-dependent helicases can
exert “antirecombinase” activities and regulate homologous recombination by dismantling key
recombination intermediates. We will accomplish this goal by directly visualizing these processes in real-
time using optical microscopy. We will analyze factors that influence antirecombinase function and
specificity, we will determine precisely how antirecombinases dismantle recombination intermediates,
and we will seek to establish an understanding of common themes conserved among different eukaryotic
antirecombinases, as well as define the unique attributes of those proteins that are of particular importance
to human health. We will seek to determine detailed molecular information related to these questions, and
part of the significance of this project lies in the depth of the answers we strive to obtain.
项目概要
我们的染色体不断受到各种侮辱的轰炸,造成必须予以修复的损害
细胞必然会进化出检测和修复断裂DNA链的机制,
从而防止丢失重要的遗传信息。双链 DNA 断裂 (DSB) 是一种类型。
如果不加以纠正,DSB 可能会导致严重的后果。
染色体重排是所有形式癌症的标志,事实上,HR-缺陷。
相关蛋白质通常与患有这些疾病的患者有关。
令人惊讶的是,由于基因组完整性的丧失,它们表现出强烈的罹患癌症的倾向。
DNA 复制是 DSB 的主要来源,因此快速生长的细胞尤其
生存依赖于同源DNA重组。
重组促进快速生长细胞的存活凸显了利用重组的潜力
抑制剂作为高度选择性的癌症疗法,充分发挥同源物的临床潜力。
重组抑制剂 我们必须更全面地了解分子细节
重组的基础以及参与调节和控制重组的蛋白质
过程。
为了帮助更好地理解同源 DNA 重组的分子基础,我们开发了
强大的新实验平台使我们能够直接可视化数百个个体 DNA
我们正在利用这些独特的研究工具来探索单分子水平的分子。
蛋白质-核酸相互作用的基本基础,重点是理解
在这里,我们将评估 ATP 依赖性解旋酶如何发挥作用。
发挥“抗重组酶”活性,通过拆解关键调控同源重组
我们将通过直接可视化这些过程来实现这一目标。
我们将使用光学显微镜分析影响抗重组酶功能的因素和时间。
特异性,我们将精确确定抗重组酶如何拆除重组中间体,
我们将寻求建立对不同真核生物之间保守的共同主题的理解
抗重组酶,以及定义那些特别重要的蛋白质的独特属性
我们将寻求确定与这些问题相关的详细分子信息,以及
这个项目的部分意义在于我们努力获得答案的深度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric C Greene其他文献
Eric C Greene的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric C Greene', 18)}}的其他基金
Protein purification instrumentation in support of single molecule studies of genome integrity
支持基因组完整性单分子研究的蛋白质纯化仪器
- 批准号:
10386035 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Defining the contributions of BRCA1, BRCA2, and RAD52 to genome stability
定义 BRCA1、BRCA2 和 RAD52 对基因组稳定性的贡献
- 批准号:
9883062 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Defining the contributions of BRCA1, BRCA2, and RAD52 to genome stability
定义 BRCA1、BRCA2 和 RAD52 对基因组稳定性的贡献
- 批准号:
10559685 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Defining the contributions of BRCA1, BRCA2, and RAD52 to genome stability
定义 BRCA1、BRCA2 和 RAD52 对基因组稳定性的贡献
- 批准号:
10348151 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Laser Scanning Imaging System in Support of Single-Molecule Studies of Genome Integrity
支持基因组完整性单分子研究的激光扫描成像系统
- 批准号:
10793020 - 财政年份:2016
- 资助金额:
-- - 项目类别:
相似国自然基金
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
METTL3通过m6A甲基化修饰NADK2调节脯氨酸代谢和胶原合成影响皮肤光老化的机制研究
- 批准号:82360625
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
-- - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
-- - 项目类别: