Defining the contributions of BRCA1, BRCA2, and RAD52 to genome stability
定义 BRCA1、BRCA2 和 RAD52 对基因组稳定性的贡献
基本信息
- 批准号:9883062
- 负责人:
- 金额:$ 41.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-11 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgingAntineoplastic AgentsBARD1 geneBRCA1 ProteinBRCA1 geneBRCA2 MutationBRCA2 geneBindingBiological AssayCellsCharacteristicsChromosomal RearrangementChromosomesClinicalComplexDNADNA Double Strand BreakDNA RepairDNA Repair PathwayDNA SequenceDNA biosynthesisDNA replication forkDefectDependenceDevelopmentDiseaseEventExhibitsFilamentFutureGenetic DiseasesGenetic RecombinationGenome StabilityGoalsHereditary Breast and Ovarian Cancer SyndromeHumanHuman BiologyHuman GenomeIndividualLeadMacromolecular ComplexesMalignant NeoplasmsMediatingMicroscopyMolecularMutateNormal CellNucleic AcidsNucleoproteinsOpticsOutcomePathway interactionsPatientsPlayPredispositionProcessPropertyProteinsRAD52 geneReactionRegulationRepair ComplexResearchResistanceRoleSingle-Stranded DNASourceSyndromeTimeTransactTumor SuppressionTumor Suppressor ProteinsWorkanti-cancer therapeuticanticancer researchbasecancer cellcancer therapychemotherapydefined contributionexperimental studygenetic informationgenome integrityhomologous recombinationhuman DNAhuman diseasehuman imaginginhibitor/antagonistinsightmalignant breast neoplasmpresynapticpreventprotein complexrepairedsingle moleculespatiotemporaltherapeutic targettime usetool
项目摘要
Project Summary
Our chromosomes are continually bombarded with a variety of insults, resulting in damage that must be
repaired. By necessity, cells have evolved mechanisms to detect and repair broken strands of DNA, thereby
preventing loss of important genetic information. Double-stranded DNA breaks (DSBs) are a type of
damage that can result in particularly disastrous outcomes. If not corrected, DSBs can lead to gross
chromosomal rearrangements, which are the hallmark of all forms of cancer. Indeed, defects in HR-related
proteins are associated with several severe genetic diseases. Patients with these diseases often exhibit a
strong predisposition for developing cancers due to a loss of genome integrity. Surprisingly, DNA
replication is the primary source of DSBs, and as a consequence rapidly growing cells are especially
dependent upon homologous DNA recombination for survival. This dependence upon homologous
recombination for the survival of rapidly growing cells highlights the potential for using recombination
inhibitors as highly selective anti-cancer therapies. To exploit the clinical potential of homologous
recombination inhibitors it will be essential that we more fully understand the molecular underpinnings of
the proteins that are involved in regulating and controlling recombination.
To help better understand the molecular basis of homologous DNA recombination we have developed
powerful new experimental platforms that allow us to directly visualize hundreds of individual DNA
molecules at the single molecule level. We are utilizing these unique research tools to probe the fundamental
basis for protein-nucleic acid interactions, with emphasis placed upon understanding reactions relevant to
human biology and disease. We have used these assays to study human RAD51, which binds to single-
stranded DNA forming a key recombination intermediate called the presynaptic complex. Here, we will
assess how complexes containing the tumor suppressor protein complexes BRCA1-BARD1, BRCA2-
DSS1, and PALB2 promote homologous recombination by regulating the activities of the RAD51
presynaptic complex. We will also examine how the protein RAD52, which newly recognized as an
important target for anti-cancer drugs, interacts with RAD51, BRCA1-BARD1, BRCA2-DSS1, and
PALB2. We will also study the protein RADX, which is emerging as a key player in genome integrity which
functions to downregulate RAD51 activity. We will accomplish these goals by directly visualizing these
processes in real-time using optical microscopy. These studies offer the potential for significant new
insights into how BRCA1-BARD1, BRCA2-DSS1, PALB2 and RAD52 regulate homologous
recombination and support human genome integrity.
项目概要
我们的染色体不断受到各种侮辱的轰炸,造成必须予以修复的损害
修复了。细胞必然会进化出检测和修复 DNA 断裂链的机制,从而
防止重要遗传信息的丢失。双链 DNA 断裂 (DSB) 是一种
可能导致特别灾难性后果的损害。如果不加以纠正,DSB 可能会导致严重的后果
染色体重排,这是所有形式癌症的标志。事实上,人力资源相关的缺陷
蛋白质与几种严重的遗传疾病有关。患有这些疾病的患者通常会表现出
由于基因组完整性丧失而极易罹患癌症。令人惊讶的是,DNA
复制是 DSB 的主要来源,因此快速生长的细胞尤其
生存依赖于同源DNA重组。这种对同源的依赖
重组促进快速生长细胞的存活凸显了利用重组的潜力
抑制剂作为高度选择性的抗癌疗法。开发同源的临床潜力
重组抑制剂 我们必须更全面地了解重组抑制剂的分子基础
参与调节和控制重组的蛋白质。
为了帮助更好地理解同源 DNA 重组的分子基础,我们开发了
强大的新实验平台使我们能够直接可视化数百个个体 DNA
单分子水平上的分子。我们正在利用这些独特的研究工具来探索基本原理
蛋白质-核酸相互作用的基础,重点是理解与相关的反应
人类生物学和疾病。我们已经使用这些测定法来研究人类 RAD51,它与单
链状 DNA 形成关键的重组中间体,称为突触前复合体。在这里,我们将
评估含有肿瘤抑制蛋白复合物 BRCA1-BARD1、BRCA2- 的复合物如何
DSS1 和 PALB2 通过调节 RAD51 的活性促进同源重组
突触前复合体。我们还将研究蛋白质 RAD52(新近被认为是一种
抗癌药物的重要靶点,与 RAD51、BRCA1-BARD1、BRCA2-DSS1 相互作用,
PALB2。我们还将研究蛋白质 RADX,它正在成为基因组完整性的关键参与者,
具有下调 RAD51 活性的功能。我们将通过直接可视化这些来实现这些目标
使用光学显微镜实时处理过程。这些研究为重大新研究提供了潜力
深入了解 BRCA1-BARD1、BRCA2-DSS1、PALB2 和 RAD52 如何调节同源
重组并支持人类基因组完整性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric C Greene其他文献
Eric C Greene的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric C Greene', 18)}}的其他基金
Protein purification instrumentation in support of single molecule studies of genome integrity
支持基因组完整性单分子研究的蛋白质纯化仪器
- 批准号:
10386035 - 财政年份:2021
- 资助金额:
$ 41.09万 - 项目类别:
Defining the contributions of BRCA1, BRCA2, and RAD52 to genome stability
定义 BRCA1、BRCA2 和 RAD52 对基因组稳定性的贡献
- 批准号:
10559685 - 财政年份:2020
- 资助金额:
$ 41.09万 - 项目类别:
Defining the contributions of BRCA1, BRCA2, and RAD52 to genome stability
定义 BRCA1、BRCA2 和 RAD52 对基因组稳定性的贡献
- 批准号:
10348151 - 财政年份:2020
- 资助金额:
$ 41.09万 - 项目类别:
Helicase regulation during homologous recombination
同源重组过程中解旋酶的调节
- 批准号:
10556346 - 财政年份:2019
- 资助金额:
$ 41.09万 - 项目类别:
Helicase regulation during homologous recombination
同源重组过程中解旋酶的调节
- 批准号:
10358504 - 财政年份:2019
- 资助金额:
$ 41.09万 - 项目类别:
Laser Scanning Imaging System in Support of Single-Molecule Studies of Genome Integrity
支持基因组完整性单分子研究的激光扫描成像系统
- 批准号:
10793020 - 财政年份:2016
- 资助金额:
$ 41.09万 - 项目类别:
相似国自然基金
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
METTL3通过m6A甲基化修饰NADK2调节脯氨酸代谢和胶原合成影响皮肤光老化的机制研究
- 批准号:82360625
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 41.09万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 41.09万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 41.09万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 41.09万 - 项目类别: