Supporting and evolving Gene Set Enrichment Analysis and the Molecular Signatures Database for cancer research
支持和发展癌症研究的基因集富集分析和分子特征数据库
基本信息
- 批准号:9921305
- 负责人:
- 金额:$ 67.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAlgorithmsBenchmarkingBiologicalBiological ProcessBiomedical ResearchCancer PatientCancer Research ProjectClustered Regularly Interspaced Short Palindromic RepeatsCodeCollaborationsCollectionCommunitiesCompanionsComputer softwareComputing MethodologiesDataData AnalysesData SetDatabasesDiseaseDocumentationEducation and OutreachEducational workshopElectronic MailEnsureExtensible Markup LanguageFamilyGene CombinationsGene Expression ProfilingGenesGeneticGenomicsGoalsInvestigationKnock-outLettersLibrariesLiteratureMalignant NeoplasmsMethodologyMethodsModalityMolecularMolecular AnalysisMolecular ProfilingNetwork-basedOpen Reading FramesPathway interactionsPersonsPharmaceutical PreparationsPhenotypeProcessProteomicsPublicationsRegulationRepressionReproducibilityResearchResearch PersonnelResourcesSamplingSourceSource CodeSpecificityTechnologyTestingTimeTrainingValidationWorkXenograft procedureanticancer researchbasechromosomal locationdata exchangedifferential expressionexperienceexperimental studyfile formatflexibilitygenome-widegenome-wide analysisimprovedinterestknock-downknowledge baselight weightmouse modelnext generationnovel strategiesopen sourceoverexpressionportabilityrelational databaserepositoryresponsesmall hairpin RNAsmall moleculesuccesstooltranscriptometranscriptome sequencinguser-friendlyweb site
项目摘要
Project Abstract
Gene Set Enrichment Analysis (GSEA) introduced in 2003, is now standard practice for analyzing genome-
wide expression data. GSEA derives its power from identifying the activation/repression of sets of genes that
share common biological function, chromosomal location or regulation and differentiate biological phenotypes
or cellular states. This knowledge-based approach is effective in elucidating underlying biological mechanisms
and generating hypotheses for further study and experimental validation. Since 2005, we have developed,
distributed and supported a freely available GSEA software application along with a database of annotated
gene sets – the Molecular Signatures Database (MSigDB). This popular resource has more than 113,000
registered users and over 10,200 citations in the literature, and the MSigDB has almost 18,000 annotated sets.
The goal of this proposal is to continue to evolve and add value to the GSEA/MSigDB resource to best address
the needs of the cancer research community, while maintaining the high level of professional quality and strong
support that investigators have come to expect. We plan to increase the power and sensitivity of the GSEA
method and enrich the MSigDB to further accelerate the pace of genomic research. Our specific aims are:
Aim 1: Develop and deploy the next generation of the GSEA method and software to keep pace with
the needs of the cancer research community. The new core algorithm will be based on information-
theoretic approaches, guided by a collection of 100 relevant benchmarks and informed by an Advisory
Board of established cancer researchers. To facilitate the use of GSEA by researchers at all levels of
computational sophistication, we will distribute the GSEA analysis tools as both an open source code
library and a suite of user friendly, reproducible, interactive, electronic notebooks.
Aim 2: Extend the scope and specificity of the MSigDB, and evolve the underlying technology. In
collaboration with the community, we will add valuable new collections to MSigDB including signatures of
drug responses and genetic perturbations, sets for use with mouse models of cancer and PDXs, sets from
pathway and network databases, and sets for use with proteomic data analysis. The MSigDB will be
redesigned from its current XML file format and deployed as a lightweight, portable relational database that
can better support its growing size, online exploration tools, and use by investigators and other software.
Aim 3: Provide training and outreach activities for the cancer research community, and maintain
and support the GSEA software and MSigDB.
The success and popularity of the GSEA/MSigDB resource over the past decade;; our extensive experience in
developing computational methods for genomics research and delivering them as user-friendly, high quality
software;; our significant user base and many citations;; our large repository of gene sets;; and our successful
delivery of documentation and training for users make us well poised to carry out the aims of this proposal.
项目摘要
基因集富集分析 (GSEA) 于 2003 年推出,现已成为分析基因组的标准做法
GSEA 的力量来自于识别一组基因的激活/抑制。
共享共同的生物功能、染色体位置或调控并区分生物表型
或细胞状态。这种基于知识的方法可以有效地阐明潜在的生物机制
自 2005 年以来,我们已经开发出用于进一步研究和实验验证的假设。
分发并支持免费提供的 GSEA 软件应用程序以及带注释的数据库
基因集 – 分子特征数据库 (MSigDB) 这个受欢迎的资源拥有超过 113,000 个。
注册用户和文献引用超过 10,200 次,MSigDB 拥有近 18,000 个注释集。
该提案的目标是继续发展 GSEA/MSigDB 资源并为其增加价值,以最好地解决
癌症研究界的需求,同时保持高水平的专业素质和强大的实力。
我们计划提高 GSEA 的能力和灵敏度。
方法并丰富 MSigDB,进一步加快基因组研究的步伐,我们的具体目标是:
目标 1:开发和部署下一代 GSEA 方法和软件,以跟上
癌症研究界的需求。新的核心算法将基于以下信息:
理论方法,以 100 个相关基准为指导,并以咨询为依据
已成立的癌症研究人员委员会,以促进各级研究人员使用 GSEA。
为了提高计算的复杂性,我们将以开源代码的形式分发 GSEA 分析工具
图书馆和一套用户友好的、可复制的、交互式的电子笔记本。
目标 2:扩展 MSigDB 的范围和特殊性,并发展底层技术。
与社区合作,我们将向 MSigDB 添加有价值的新集合,包括签名
药物反应和遗传扰动,用于癌症和 PDX 小鼠模型的组,来自
通路和网络数据库以及用于蛋白质组数据分析的集。
从当前的 XML 文件格式重新设计并部署为轻量级、可移植的关系数据库
可以更好地支持其不断增长的规模、在线探索工具以及调查人员和其他软件的使用。
目标 3:为癌症研究界提供培训和外展活动,并维持
并支持GSEA软件和MSigDB。
过去十年 GSEA/MSigDB 资源的成功和受欢迎程度;;我们在这方面的丰富经验
开发基因组学研究的计算方法,并以用户友好、高质量的方式提供它们
软件;;我们重要的用户群和许多引用;;我们的大型基因组存储库;;
为用户提供文档和培训使我们能够很好地实现该提案的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JILL P. MESIROV其他文献
JILL P. MESIROV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JILL P. MESIROV', 18)}}的其他基金
The Integrative Genomics Viewer (IGV) for Cancer Research
用于癌症研究的综合基因组学查看器 (IGV)
- 批准号:
10483114 - 财政年份:2021
- 资助金额:
$ 67.99万 - 项目类别:
The Integrative Genomics Viewer (IGV) for Cancer Research
用于癌症研究的综合基因组学查看器 (IGV)
- 批准号:
10187388 - 财政年份:2021
- 资助金额:
$ 67.99万 - 项目类别:
The Integrative Genomics Viewer (IGV) for Cancer Research
用于癌症研究的综合基因组学查看器 (IGV)
- 批准号:
10704678 - 财政年份:2021
- 资助金额:
$ 67.99万 - 项目类别:
GenePattern and GenePattern Notebook: Integrative 'Omic Analysis for Cancer Research
GenePattern 和 GenePattern Notebook:癌症研究的综合组学分析
- 批准号:
10656205 - 财政年份:2020
- 资助金额:
$ 67.99万 - 项目类别:
GenePattern and GenePattern Notebook: Integrative 'Omic Analysis for Cancer Research
GenePattern 和 GenePattern Notebook:癌症研究的综合组学分析
- 批准号:
10409771 - 财政年份:2020
- 资助金额:
$ 67.99万 - 项目类别:
GenePattern and GenePattern Notebook: Integrative 'Omic Analysis for Cancer Research
GenePattern 和 GenePattern Notebook:癌症研究的综合组学分析
- 批准号:
10164740 - 财政年份:2020
- 资助金额:
$ 67.99万 - 项目类别:
Supporting and evolving Gene Set Enrichment Analysis and the Molecular Signatures Database for cancer research
支持和发展癌症研究的基因集富集分析和分子特征数据库
- 批准号:
10153712 - 财政年份:2018
- 资助金额:
$ 67.99万 - 项目类别:
Supporting and evolving Gene Set Enrichment Analysis and the Molecular Signatures Database for cancer research
支持和发展癌症研究的基因集富集分析和分子特征数据库
- 批准号:
10400203 - 财政年份:2018
- 资助金额:
$ 67.99万 - 项目类别:
The Integrative Genomics Viewer (IGV): visualization supporting cancer research
综合基因组学查看器 (IGV):支持癌症研究的可视化
- 批准号:
9770558 - 财政年份:2016
- 资助金额:
$ 67.99万 - 项目类别:
The Integrative Genomics Viewer (IGV): visualization supporting cancer research
综合基因组学查看器 (IGV):支持癌症研究的可视化
- 批准号:
9186440 - 财政年份:2016
- 资助金额:
$ 67.99万 - 项目类别:
相似国自然基金
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
分布式机器学习算法设计与理论分析
- 批准号:62376008
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
贝叶斯框架下基于采样算法的弹性介质全波形反演与不确定性分析
- 批准号:42374138
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
反位势散射问题的增长稳定性分析和算法研究
- 批准号:12371421
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于网络嵌入算法的复杂城市系统空间分析与传播动力学研究
- 批准号:72371014
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Investigating the Protective Efficacy of SIV/HIV T and B cell Immunity Induced by RNA Replicons
研究 RNA 复制子诱导的 SIV/HIV T 和 B 细胞免疫的保护功效
- 批准号:
10673223 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别: