Supporting and evolving Gene Set Enrichment Analysis and the Molecular Signatures Database for cancer research
支持和发展癌症研究的基因集富集分析和分子特征数据库
基本信息
- 批准号:10153712
- 负责人:
- 金额:$ 67.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAlgorithmsBenchmarkingBiologicalBiological ProcessBiomedical ResearchCancer PatientCancer Research ProjectClustered Regularly Interspaced Short Palindromic RepeatsCodeCollaborationsCollectionCommunitiesCompanionsComputer softwareComputing MethodologiesDataData AnalysesData SetDatabasesDiseaseDocumentationEducation and OutreachEducational workshopElectronic MailEnsureExtensible Markup LanguageFamilyGene CombinationsGene Expression ProfilingGene set enrichment analysisGenesGeneticGenetic TranscriptionGenomicsGoalsInvestigationKnock-outLettersLibrariesLiteratureMalignant NeoplasmsMethodologyMethodsModalityMolecularMolecular ProfilingNetwork-basedOpen Reading FramesPathway interactionsPersonsPharmaceutical PreparationsPhenotypeProcessProteomicsPublicationsRegulationRepressionReproducibilityResearchResearch PersonnelResourcesSamplingSourceSource CodeSpecificityTechnologyTestingTimeTrainingValidationWorkanticancer researchbasechromosomal locationdata exchangedifferential expressionexperienceexperimental studyfile formatflexibilitygenome-widegenome-wide analysisimprovedinterestknock-downknowledge baselight weightmouse modelnext generationnovel strategiesopen sourceoverexpressionpatient derived xenograft modelportabilityrelational databaserepositoryresponsesmall hairpin RNAsmall moleculesuccesstooltranscriptome sequencinguser-friendlyweb site
项目摘要
Project Abstract
Gene Set Enrichment Analysis (GSEA) introduced in 2003, is now standard practice for analyzing genome-
wide expression data. GSEA derives its power from identifying the activation/repression of sets of genes that
share common biological function, chromosomal location or regulation and differentiate biological phenotypes
or cellular states. This knowledge-based approach is effective in elucidating underlying biological mechanisms
and generating hypotheses for further study and experimental validation. Since 2005, we have developed,
distributed and supported a freely available GSEA software application along with a database of annotated
gene sets – the Molecular Signatures Database (MSigDB). This popular resource has more than 113,000
registered users and over 10,200 citations in the literature, and the MSigDB has almost 18,000 annotated sets.
The goal of this proposal is to continue to evolve and add value to the GSEA/MSigDB resource to best address
the needs of the cancer research community, while maintaining the high level of professional quality and strong
support that investigators have come to expect. We plan to increase the power and sensitivity of the GSEA
method and enrich the MSigDB to further accelerate the pace of genomic research. Our specific aims are:
Aim 1: Develop and deploy the next generation of the GSEA method and software to keep pace with
the needs of the cancer research community. The new core algorithm will be based on information-
theoretic approaches, guided by a collection of 100 relevant benchmarks and informed by an Advisory
Board of established cancer researchers. To facilitate the use of GSEA by researchers at all levels of
computational sophistication, we will distribute the GSEA analysis tools as both an open source code
library and a suite of user friendly, reproducible, interactive, electronic notebooks.
Aim 2: Extend the scope and specificity of the MSigDB, and evolve the underlying technology. In
collaboration with the community, we will add valuable new collections to MSigDB including signatures of
drug responses and genetic perturbations, sets for use with mouse models of cancer and PDXs, sets from
pathway and network databases, and sets for use with proteomic data analysis. The MSigDB will be
redesigned from its current XML file format and deployed as a lightweight, portable relational database that
can better support its growing size, online exploration tools, and use by investigators and other software.
Aim 3: Provide training and outreach activities for the cancer research community, and maintain
and support the GSEA software and MSigDB.
The success and popularity of the GSEA/MSigDB resource over the past decade;; our extensive experience in
developing computational methods for genomics research and delivering them as user-friendly, high quality
software;; our significant user base and many citations;; our large repository of gene sets;; and our successful
delivery of documentation and training for users make us well poised to carry out the aims of this proposal.
项目摘要
2003年引入的基因集富集分析(GSEA)现在是分析基因组的标准实践
广泛的表达数据。 GSEA通过确定基因集的激活/抑制而获得其力量
共享共同的生物学功能,染色体位置或调节,并区分生物学表型
或细胞状态。这种基于知识的方法有效阐明潜在的生物学机制
并产生用于进一步研究和实验验证的假设。自2005年以来,我们已经发展了
分发并支持免费的可用GSEA软件应用程序以及带注释的数据库
基因集 - 分子特征数据库(MSIGDB)。这个流行的资源超过113,000
注册用户和文献中的10,200多种引用,MSIGDB的注释近18,000套。
该提案的目的是继续发展并为GSEA/MSIGDB资源增加价值为最佳地址
癌症研究界的需求,同时保持高水平的专业质量和强大
支持调查人员已经期待的支持。我们计划提高GSEA的功率和灵敏度
方法并丰富了MSIGDB,以进一步加速基因组研究的空间。我们的具体目的是:
目标1:开发和部署下一代GSEA方法和软件,以保持空间
癌症研究界的需求。新的核心算法将基于信息 -
理论方法,以100个相关基准的集合为指导,并由咨询
成熟的癌症研究人员委员会。促进研究人员在各个级别的GSEA使用
计算社会化,我们将分发GSEA分析工具作为开源代码
图书馆和一套用户友好,可重复的,互动的,电子笔记本。
目标2:扩展MSIGDB的范围和特异性,并发展基础技术。在
与社区的合作,我们将为MSIGDB增加价值的新收藏,包括
药物反应和遗传扰动,用于与癌症和PDX的小鼠模型一起使用的集合
途径和网络数据库,并设置用于蛋白质组学数据分析。 MSIGDB将
从其当前的XML文件格式重新设计,并部署为轻巧的,可移植的关系数据库
可以更好地支持其不断增长的规模,在线探索工具以及研究人员和其他软件的使用。
目标3:为癌症研究界提供培训和外展活动,并维护
并支持GSEA软件和MSIGDB。
在过去的十年中,GSEA/MSIGDB资源的成功和普及;我们丰富的经验
开发用于基因组学研究的计算方法,并将其作为用户友好,高质量传递
软件;;我们重要的用户群和许多引用;我们的大型基因库;和我们的成功
提供给用户的文档和培训使我们有充分的中毒来执行该建议的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JILL P. MESIROV其他文献
JILL P. MESIROV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JILL P. MESIROV', 18)}}的其他基金
The Integrative Genomics Viewer (IGV) for Cancer Research
用于癌症研究的综合基因组学查看器 (IGV)
- 批准号:
10483114 - 财政年份:2021
- 资助金额:
$ 67.99万 - 项目类别:
The Integrative Genomics Viewer (IGV) for Cancer Research
用于癌症研究的综合基因组学查看器 (IGV)
- 批准号:
10187388 - 财政年份:2021
- 资助金额:
$ 67.99万 - 项目类别:
The Integrative Genomics Viewer (IGV) for Cancer Research
用于癌症研究的综合基因组学查看器 (IGV)
- 批准号:
10704678 - 财政年份:2021
- 资助金额:
$ 67.99万 - 项目类别:
GenePattern and GenePattern Notebook: Integrative 'Omic Analysis for Cancer Research
GenePattern 和 GenePattern Notebook:癌症研究的综合组学分析
- 批准号:
10656205 - 财政年份:2020
- 资助金额:
$ 67.99万 - 项目类别:
GenePattern and GenePattern Notebook: Integrative 'Omic Analysis for Cancer Research
GenePattern 和 GenePattern Notebook:癌症研究的综合组学分析
- 批准号:
10409771 - 财政年份:2020
- 资助金额:
$ 67.99万 - 项目类别:
GenePattern and GenePattern Notebook: Integrative 'Omic Analysis for Cancer Research
GenePattern 和 GenePattern Notebook:癌症研究的综合组学分析
- 批准号:
10164740 - 财政年份:2020
- 资助金额:
$ 67.99万 - 项目类别:
Supporting and evolving Gene Set Enrichment Analysis and the Molecular Signatures Database for cancer research
支持和发展癌症研究的基因集富集分析和分子特征数据库
- 批准号:
10400203 - 财政年份:2018
- 资助金额:
$ 67.99万 - 项目类别:
Supporting and evolving Gene Set Enrichment Analysis and the Molecular Signatures Database for cancer research
支持和发展癌症研究的基因集富集分析和分子特征数据库
- 批准号:
9921305 - 财政年份:2018
- 资助金额:
$ 67.99万 - 项目类别:
The Integrative Genomics Viewer (IGV): visualization supporting cancer research
综合基因组学查看器 (IGV):支持癌症研究的可视化
- 批准号:
9770558 - 财政年份:2016
- 资助金额:
$ 67.99万 - 项目类别:
The Integrative Genomics Viewer (IGV): visualization supporting cancer research
综合基因组学查看器 (IGV):支持癌症研究的可视化
- 批准号:
9186440 - 财政年份:2016
- 资助金额:
$ 67.99万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于深度学习模型的等位特异DNA甲基化识别算法开发及分析研究
- 批准号:62301194
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相场模型时空高精度算法的构造与分析
- 批准号:12371396
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非光滑Dirac方程的高效数值算法和分析
- 批准号:12371395
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
概率约束条件下非线性系统混合最优控制的数值算法设计、分析与应用
- 批准号:62363005
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
相似海外基金
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别:
Investigating the Protective Efficacy of SIV/HIV T and B cell Immunity Induced by RNA Replicons
研究 RNA 复制子诱导的 SIV/HIV T 和 B 细胞免疫的保护功效
- 批准号:
10673223 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 67.99万 - 项目类别: