Antimicrobial mechanisms of action zinc oxide nanoparticles

氧化锌纳米粒子的抗菌作用机制

基本信息

  • 批准号:
    9918245
  • 负责人:
  • 金额:
    $ 19.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-23 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY: Despite a decade of engineering advancements and clinical process improvements, 1 million healthcare- associated infections in the U.S. can be attributed to indwelling medical devices annually. Zinc oxide nanoparticles (ZnO-NPs) are one of the most promising emerging antimicrobials with potential to combat device related infection. ZnO-NPs are inexpensive, stable, and easy to prepare with broad antimicrobial spectrum and wide therapeutic window. However, the antimicrobial mechanism of action of ZnO-NPs remains elusive. This proposal is specifically motivated to better understand the mechanism of action of ZnO-NPs. Such understanding is necessary to guide the design of device coatings that preserve antibacterial function in vivo. Reactive oxygen species (ROS) generation or membrane disruption are hypothesized mechanisms of action. However the literature is inconsistent and our preliminary data suggests that these NP effects are not sufficient. We recently demonstrated that ZnO-NPs have shape-dependent, biomimetic, reversible, enzyme inhibition properties. The central research question for this career development grant is: To what extent does ZnO-NP behavior as an enzyme inhibitor contribute to antimicrobial activity? I have multidisciplinary training in medicine, engineering, and molecular biology that is well-suited to address this question. My ultimate career goal is to become a clinician-scientist. I plan to have a clinical interest in sepsis as it relates to indwelling medical devices and an independently funded research program focused on the development of novel biomaterials to resist microbial contamination and infection. This proposal was developed to solidify my expertise, formalize my research niche, and garner the resources for the next phase of career development. My specific career development objectives for the next four years are to: 1. Solidify my expertise in microbiology (including biofilm microbiology), microbial-surface interaction, nanoparticle technology, and translational research. 2. Master techniques in evaluating mechanisms of action of antimicrobial and anti-biofilm materials. 3. Generate sufficient preliminary data and publication record to obtain independent research funding. 4. Secure my niche as an expert in bacterial-nanomaterial interactions. 5. Obtain secondary appointment in the College of Engineering so that I can work with and mentor graduate students in their research and career development. I have assembled a mentorship team of experts co-localized at the University of Michigan North Campus Research Complex with experience in clinical medicine, microbiology, material science and engineering, and product development/commercialization. Together we have devised a highly-individualized, project-oriented training plan that includes regular mentorship meetings, formal didactic education, career development workshops, and presentation at local and national conferences. Partnered with this career development plan is an innovative research plan. By synthesizing ZnO-NPs that are identical in surface chemistry but differ only in shape we can control the potential for enzyme inhibition and address the central research question above. Using these novel preparations, we will test the hypothesis: Pyramidal ZnO-NPs inhibit a cohort of bacterial enzymes which are critical to survival. Our research specific aims are to: 1. Quantify aerobic metabolism, membrane integrity, and microbial death in a commonly isolated medical device pathogen (i.e., Staphylococcus aureus) as a function of exposure time to spherical vs pyramidal ZnO-NPs. 2. Identify genes involved in enzyme inhibition by ZnO-NPs using a mariner transposon mutant library of S. aureus. 3. Determine the subset of S. aureus proteins that specifically complex with ZnO-NPs in a shape- dependent manner by 2D-gel electrophoresis followed by liquid chromatography paired with tandem mass spectroscopy (LC-MS/MS).
项目概要: 尽管经过十年的工程进步和临床流程改进,仍有 100 万医疗保健- 在美国,每年都会有因留置医疗器械引起的相关感染。氧化锌 纳米粒子(ZnO-NPs)是最有前途的新兴抗菌剂之一,具有对抗微生物的潜力。 设备相关感染。 ZnO-NPs 价格低廉、稳定且易于制备,具有广泛的抗菌作用 频谱和宽的治疗窗口。然而,ZnO-NPs 的抗菌作用机制仍然存在。 难以捉摸。该提案的具体目的是为了更好地了解 ZnO-NP 的作用机制。 这种理解对于指导保持抗菌功能的器械涂层的设计是必要的。 体内。活性氧 (ROS) 的产生或膜破坏是假设的机制 行动。然而文献并不一致,我们的初步数据表明这些 NP 效应并不 充足的。我们最近证明 ZnO-NPs 具有形状依赖性、仿生性、可逆性、酶 抑制特性。这项职业发展补助金的核心研究问题是:在多大程度上 ZnO-NP 作为酶抑制剂的行为有助于抗菌活性吗? 我接受过医学、工程和分子生物学方面的多学科培训,非常适合解决 这个问题。我的最终职业目标是成为一名临床医生科学家。我计划对以下领域产生临床兴趣 脓毒症,因为它涉及留置医疗器械和一个独立资助的研究项目,重点是 开发新型生物材料来抵抗微生物污染和感染。该提案是 旨在巩固我的专业知识,规范我的研究领域,并为下一阶段获取资源 的职业发展。我未来四年的具体职业发展目标是: 1. 巩固我在微生物学(包括生物膜微生物学)、微生物与表面相互作用、 纳米粒子技术和转化研究。 2. 掌握抗菌、抗生物膜材料作用机制评价技术。 3. 产生足够的初步数据和发表记录以获得独立研究经费。 4. 确保我作为细菌-纳米材料相互作用专家的地位。 5.获得工程学院的二次任命,以便我可以与我一起工作和指导 研究生的研究和职业发展。 我在密歇根大学北校区组建了一支由专家组成的导师团队 研究中心在临床医学、微生物学、材料科学与工程方面拥有丰富的经验 产品开发/商业化。我们共同设计了一个高度个性化、以项目为导向的 培训计划,包括定期指导会议、正式教学教育、职业发展 研讨会以及在地方和国家会议上的演讲。 与此职业发展计划相配合的是一项创新研究计划。通过合成 ZnO-NPs, 表面化学相同,但仅形状不同,我们可以控制酶抑制的潜力, 解决上述中心研究问题。使用这些新颖的制剂,我们将检验假设: 金字塔形 ZnO-NPs 抑制一组对生存至关重要的细菌酶。我们的研究 具体目标是: 1. 量化常见隔离医学中的有氧代谢、膜完整性和微生物死亡 设备病原体(即金黄色葡萄球菌)作为接触球形与锥体的时间的函数 ZnO-NP。 2. 使用 ZnO-NPs 的水手转座子突变体库鉴定参与 ZnO-NP 酶抑制的基因 金黄色葡萄球菌。 3. 确定与 ZnO-NPs 特异性复合的金黄色葡萄球菌蛋白子集,其形状为: 通过 2D 凝胶电泳、随后液相色谱与串联配对的依赖方式 质谱(LC-MS/MS)。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Culture-free bacterial detection and identification from blood with rapid, phenotypic, antibiotic susceptibility testing.
  • DOI:
    10.1038/s41598-018-21520-9
  • 发表时间:
    2018-02-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Shi X;Kadiyala U;VanEpps JS;Yau ST
  • 通讯作者:
    Yau ST
Plasmonic nanoparticles assemblies templated by helical bacteria and resulting optical activity.
  • DOI:
    10.1002/chir.23225
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Feng W;Kadiyala U;Yan J;Wang Y;DiRita VJ;VanEpps JS;Kotov NA
  • 通讯作者:
    Kotov NA
Improved diagnostic prediction of the pathogenicity of bloodstream isolates of Staphylococcus epidermidis.
  • DOI:
    10.1371/journal.pone.0241457
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    VanAken SM;Newton D;VanEpps JS
  • 通讯作者:
    VanEpps JS
Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature.
  • DOI:
    10.2174/1381612824666180219130659
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Kadiyala U;Kotov NA;VanEpps JS
  • 通讯作者:
    VanEpps JS
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J SCOTT VANEPPS其他文献

J SCOTT VANEPPS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J SCOTT VANEPPS', 18)}}的其他基金

Adjuvant heat treatment for catheter salvage in central line associated bloodstream infection (HEATSAVE)
中心导管相关血流感染导管抢救的辅助热处理 (HEATSAVE)
  • 批准号:
    10440832
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
Adjuvant heat treatment for catheter salvage in central line associated bloodstream infection (HEATSAVE)
中心导管相关血流感染导管抢救的辅助热处理 (HEATSAVE)
  • 批准号:
    10620335
  • 财政年份:
    2022
  • 资助金额:
    $ 19.44万
  • 项目类别:
Antimicrobial mechanisms of action zinc oxide nanoparticles
氧化锌纳米粒子的抗菌作用机制
  • 批准号:
    9385809
  • 财政年份:
    2017
  • 资助金额:
    $ 19.44万
  • 项目类别:
Coronary arterial dynamics and atherogenesis
冠状动脉动力学和动脉粥样硬化形成
  • 批准号:
    6998169
  • 财政年份:
    2005
  • 资助金额:
    $ 19.44万
  • 项目类别:
Coronary arterial dynamics and atherogenesis
冠状动脉动力学和动脉粥样硬化形成
  • 批准号:
    7107897
  • 财政年份:
    2005
  • 资助金额:
    $ 19.44万
  • 项目类别:

相似国自然基金

动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
  • 批准号:
    82000254
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
  • 批准号:
    31902264
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    300 万元
  • 项目类别:
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
  • 批准号:
    81804098
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
  • 批准号:
    81871787
  • 批准年份:
    2018
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
  • 批准号:
    10752141
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
2023 Elastin, Elastic Fibers and Microfibrils Gordon Research Conference and Gordon Research Seminar
2023年弹性蛋白、弹性纤维和微纤维戈登研究会议和戈登研究研讨会
  • 批准号:
    10754079
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
  • 批准号:
    10736860
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
  • 批准号:
    10664118
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
  • 批准号:
    10677182
  • 财政年份:
    2023
  • 资助金额:
    $ 19.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了