Antimicrobial mechanisms of action zinc oxide nanoparticles
氧化锌纳米粒子的抗菌作用机制
基本信息
- 批准号:9385809
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-23 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAffectAnti-Bacterial AgentsAntibiotic TherapyAntibioticsAppointmentBacteriaBehaviorBindingBiocompatible MaterialsBiomimeticsCell DeathCell RespirationCell WallCell physiologyCellsCessation of lifeChemistryClinicalClinical MedicineComplexDataDevelopmentDevelopment PlansDevice DesignsDevicesEducational workshopEngineeringEnzyme InhibitionEnzyme Inhibitor DrugsEnzymesEvaluationFundingGenerationsGenesGenomicsGoalsGrantGrowthHealthcareImmune responseImplantInfectionInfection preventionLeadLibrariesLifeLiquid ChromatographyLiteratureMammalian CellMass Spectrum AnalysisMediatingMedical DeviceMedicineMembraneMentored Clinical Scientist Development Award (K08)MentorsMentorshipMetabolic PathwayMichiganMicrobial BiofilmsMicrobiologyModificationMolecular BiologyNP proteinOperating RoomsOperative Surgical ProceduresOxidative StressPathogenicityPatientsPredispositionPreparationProcessPropertyProteinsProteomicsPublicationsReactive Oxygen SpeciesResearchResourcesScientistSecureSepsisShapesStaphylococcus aureusSurfaceSystemTechniquesTechnologyTestingTherapeuticTimeTrainingTranslational ResearchUniversitiesWorkZinc Oxideantimicrobialantimicrobial peptidebiological adaptation to stresscareercareer developmentcohortcollegecombatcommercializationcostdidactic educationexperienceextracellulargel electrophoresisgraduate studentimplant materialimplantable devicein vivoinnovationinterestmaterials sciencemedical implantmeetingsmicrobialmultidisciplinarymutantnanomaterialsnanoparticlenew technologynovelpathogenpreventproduct developmentprogramsprotein complexresearch and developmentsymposium
项目摘要
PROJECT SUMMARY:
Despite a decade of engineering advancements and clinical process improvements, 1 million healthcare-
associated infections in the U.S. can be attributed to indwelling medical devices annually. Zinc oxide
nanoparticles (ZnO-NPs) are one of the most promising emerging antimicrobials with potential to combat
device related infection. ZnO-NPs are inexpensive, stable, and easy to prepare with broad antimicrobial
spectrum and wide therapeutic window. However, the antimicrobial mechanism of action of ZnO-NPs remains
elusive. This proposal is specifically motivated to better understand the mechanism of action of ZnO-NPs.
Such understanding is necessary to guide the design of device coatings that preserve antibacterial function in
vivo. Reactive oxygen species (ROS) generation or membrane disruption are hypothesized mechanisms of
action. However the literature is inconsistent and our preliminary data suggests that these NP effects are not
sufficient. We recently demonstrated that ZnO-NPs have shape-dependent, biomimetic, reversible, enzyme
inhibition properties. The central research question for this career development grant is: To what extent does
ZnO-NP behavior as an enzyme inhibitor contribute to antimicrobial activity?
I have multidisciplinary training in medicine, engineering, and molecular biology that is well-suited to address
this question. My ultimate career goal is to become a clinician-scientist. I plan to have a clinical interest in
sepsis as it relates to indwelling medical devices and an independently funded research program focused on
the development of novel biomaterials to resist microbial contamination and infection. This proposal was
developed to solidify my expertise, formalize my research niche, and garner the resources for the next phase
of career development. My specific career development objectives for the next four years are to:
1. Solidify my expertise in microbiology (including biofilm microbiology), microbial-surface interaction,
nanoparticle technology, and translational research.
2. Master techniques in evaluating mechanisms of action of antimicrobial and anti-biofilm materials.
3. Generate sufficient preliminary data and publication record to obtain independent research funding.
4. Secure my niche as an expert in bacterial-nanomaterial interactions.
5. Obtain secondary appointment in the College of Engineering so that I can work with and mentor
graduate students in their research and career development.
I have assembled a mentorship team of experts co-localized at the University of Michigan North Campus
Research Complex with experience in clinical medicine, microbiology, material science and engineering, and
product development/commercialization. Together we have devised a highly-individualized, project-oriented
training plan that includes regular mentorship meetings, formal didactic education, career development
workshops, and presentation at local and national conferences.
Partnered with this career development plan is an innovative research plan. By synthesizing ZnO-NPs that are
identical in surface chemistry but differ only in shape we can control the potential for enzyme inhibition and
address the central research question above. Using these novel preparations, we will test the hypothesis:
Pyramidal ZnO-NPs inhibit a cohort of bacterial enzymes which are critical to survival. Our research
specific aims are to:
1. Quantify aerobic metabolism, membrane integrity, and microbial death in a commonly isolated medical
device pathogen (i.e., Staphylococcus aureus) as a function of exposure time to spherical vs pyramidal
ZnO-NPs.
2. Identify genes involved in enzyme inhibition by ZnO-NPs using a mariner transposon mutant library of
S. aureus.
3. Determine the subset of S. aureus proteins that specifically complex with ZnO-NPs in a shape-
dependent manner by 2D-gel electrophoresis followed by liquid chromatography paired with tandem
mass spectroscopy (LC-MS/MS).
项目摘要:
尽管有十年的工程进步和临床过程改进,但100万个医疗保健
美国相关的感染每年可归因于留置医疗设备。氧化锌
纳米颗粒(ZnO-NP)是最有前途的抗菌剂之一,具有对抗的潜力
设备相关感染。 Zno-NP廉价,稳定且易于使用宽阔的抗菌素
光谱和宽阔的治疗窗口。但是,Zno-NP的作用抗菌机理仍然存在
难以捉摸。该建议是特别动机,以更好地理解ZnO-NP的作用机理。
这种理解对于指导在保留抗菌功能的设备涂料的设计中是必要的
体内。活性氧(ROS)产生或膜破坏是假设的机制
行动。但是,文献不一致,我们的初步数据表明这些NP效应不是
充足的。我们最近证明ZnO-NP具有形状依赖性,仿生,可逆的酶
抑制特性。这项职业发展赠款的中心研究问题是:
ZnO-NP作为酶抑制剂的行为有助于抗菌活性?
我接受了医学,工程和分子生物学的多学科培训,非常适合解决
这个问题。我的最终职业目标是成为临床医生科学家。我计划对
败血症与留置医疗设备和一个独立资助的研究计划有关
新型生物材料的发展以抵抗微生物污染和感染。该提议是
开发旨在巩固我的专业知识,正式化我的研究利基市场,并获得下一阶段的资源
职业发展。我未来四年的特定职业发展目标是:
1。巩固我在微生物学方面的专业知识(包括生物膜微生物学),微生物表面相互作用,
纳米颗粒技术和转化研究。
2。评估抗菌和抗生物膜材料作用机理的主要技术。
3。生成足够的初步数据和出版记录,以获得独立的研究资金。
4。确保我作为细菌纳米材料相互作用专家的利基市场。
5。在工程学院获得次要任命,以便我可以与
研究生研究和职业发展。
我已经组建了一个在密歇根大学北校区共定位的专家的指导团队
研究综合体具有临床医学,微生物学,材料科学和工程的经验,以及
产品开发/商业化。我们一起设计了一个高度个性化的,面向项目的
培训计划,包括定期指导会议,正式教学教育,职业发展
讲习班,并在地方和民族会议上演讲。
与该职业发展计划合作是一项创新的研究计划。通过合成ZnO-NP
表面化学的相同,但仅在形状上有所不同,我们可以控制酶抑制的潜力
解决上面的中心研究问题。使用这些新颖的准备工作,我们将检验以下假设:
锥体ZnO-NP抑制了对生存至关重要的细菌酶。我们的研究
具体目的是:
1。定量有氧代谢,膜完整性和微生物死亡
装置病原体(即金黄色葡萄球菌)与球形与金字塔的暴露时间有关
Zno-NP。
2。使用水手Transposon突变库中的ZnO-NP抑制酶抑制酶的基因
S.金黄色葡萄酒。
3。确定金黄色葡萄球菌蛋白的子集,该蛋白质与ZnO-NP特别复杂
2D凝胶电泳的依赖方式,然后是液相色谱与串联配对
质谱法(LC-MS/MS)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J SCOTT VANEPPS其他文献
J SCOTT VANEPPS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J SCOTT VANEPPS', 18)}}的其他基金
Adjuvant heat treatment for catheter salvage in central line associated bloodstream infection (HEATSAVE)
中心导管相关血流感染导管抢救的辅助热处理 (HEATSAVE)
- 批准号:
10440832 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Adjuvant heat treatment for catheter salvage in central line associated bloodstream infection (HEATSAVE)
中心导管相关血流感染导管抢救的辅助热处理 (HEATSAVE)
- 批准号:
10620335 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Antimicrobial mechanisms of action zinc oxide nanoparticles
氧化锌纳米粒子的抗菌作用机制
- 批准号:
9918245 - 财政年份:2017
- 资助金额:
$ 19.44万 - 项目类别:
Coronary arterial dynamics and atherogenesis
冠状动脉动力学和动脉粥样硬化形成
- 批准号:
6998169 - 财政年份:2005
- 资助金额:
$ 19.44万 - 项目类别:
Coronary arterial dynamics and atherogenesis
冠状动脉动力学和动脉粥样硬化形成
- 批准号:
7107897 - 财政年份:2005
- 资助金额:
$ 19.44万 - 项目类别:
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
- 批准号:
10752141 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
2023 Elastin, Elastic Fibers and Microfibrils Gordon Research Conference and Gordon Research Seminar
2023年弹性蛋白、弹性纤维和微纤维戈登研究会议和戈登研究研讨会
- 批准号:
10754079 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Deciphering the role of mitochondrial/autophagy dysfunction in regulating inflammatory processes during AMD pathogenesis
破译线粒体/自噬功能障碍在 AMD 发病机制中调节炎症过程中的作用
- 批准号:
10664118 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别: