Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
基本信息
- 批准号:9490092
- 负责人:
- 金额:$ 60.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-17 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAlgorithmsAutomobile DrivingBindingBiochemical ReactionBioinformaticsBiological AssayCancer ModelCell DeathCell modelCell physiologyCell surfaceCellsCessation of lifeClinical TrialsCollaborationsCommunitiesComplexComputational TechniqueComputational algorithmComputer SimulationCoupledDataDiagnosisDifferential EquationDisease modelDrug KineticsEpithelial-Stromal CommunicationGene ExpressionGene Expression ProfileGene ProteinsGene TargetingGeneticGenomicsGeometryGrowthHistologicHumanHybridsImageIn VitroInvadedKnowledgeLaboratoriesLigandsLiverLiver neoplasmsMalignant Epithelial CellMalignant NeoplasmsMalignant neoplasm of liverMathematicsMeasurementMeasuresMitoticModalityModelingMolecularMolecular ProfilingMusOpticsOrganOrganoidsPharmaceutical PreparationsPharmacodynamicsPhenotypePrediction of Response to TherapyPrimary carcinoma of the liver cellsProteomicsReactionResearch PersonnelSignal PathwaySignal TransductionSource CodeStromal CellsSurvival RateTechniquesThe Cancer Genome AtlasTherapeuticTimeTranslationsTransport ProcessTransport ReactionTumor Cell InvasionTumor stageValidationbasebiological systemscancer cellcell growthcell typecellular imagingdata modelingdesignexperimental studyextracellulargenomic dataglobal healthhuman dataimprovedin vivoinhibitor/antagonistinnovationmathematical modelmodel developmentmolecular imagingmolecular modelingmortalitymouse modelmulti-scale modelingmutational statusnetwork modelsnovelopen sourceoutcome predictionpersonalized medicinepharmacodynamic modelpharmacokinetic modelphosphoproteomicspredicting responseprediction algorithmreconstructionresponsetargeted treatmenttreatment responsetreatment strategytumortumor growthtumor microenvironmenttumor progression
项目摘要
Project Summary
Liver cancer is a major global health problem, responsible for the 3rd most cancer deaths worldwide. Diagnosis
often occurs at late stages, at which point liver tumors have complex tumor/stroma interactions across multiple
spatial and temporal scales. The resulting multiscale interactions drive tumor progression and therapeutic
response. The proposed project will develop new mathematical/computational techniques to model molecular,
cellular, tumor, and organ scales to elucidate the mechanisms driving liver cancer progression and to predict
the response to targeted therapeutics. The investigator team is uniquely suited to develop the proposed
multiscale models of hepatocellular carcinoma (HCC), the most common type of liver cancer. The expertise of
the four PIs/PDs is synergistic, combining a state of the art multiscale computational models of cancer (Dr.
Popel) with molecular and cellular features inferred from bioinformatics analysis (Dr. Fertig) using state of the
art 3D in vitro organoid models (Dr. Ewald) and in vivo mouse models of HCC (Dr. Tran). The well-integrated
experimental/computational design of the proposal will result in new algorithms for predictive computational
modeling of therapeutic response in HCC. We include extensive experimental studies for model development,
parameter tuning, and validation. Specific Aim 1 will infer bioinformatically the signaling pathways important in
crosstalk between cancer and stromal cells, integrate models of intracellular signaling and 3D extracellular
ligand transport and biochemical reactions and embed them into the cell fate decision rules of an agent-based
model of cellular agents resulting in a multiscale hybrid model. The model will be parameterized with phospho-
proteomic data under relevant ligand stimulations identified by the bioinformatics analysis and with growth,
invasion, proteomic, and genomic data from co-cultured cancer and stromal cells and organoids; independent
data will be used for model validation. We will use this model to predict outcomes in a 3D in vitro organoid
model of HCC. Specific Aim 2 will extend and adapt this hybrid model to model the tumor microenvironment
and to account for the drug pharmacokinetic and pharmacodynamic, the 3D geometry of the liver, molecular
interactions in vivo and cellular composition inferred from bioinformatics analysis. Finally, Specific Aim 3 will
develop new bioinformatics analysis algorithms to initialize the model with distribution of cellular agents and
molecular states from The Cancer Genome Atlas (TCGA) genomic and proteomic data to predict the efficacy
of targeted therapeutics in the diverse genetic backgrounds of human liver cancer. The project will develop
innovative computational techniques to integrate features at both the molecular and cellular scales from
genomics and proteomics analysis with multiscale computational models to predict therapeutic response. The
resulting computational algorithms will address the IMAG cutting edge challenge of fusing data-rich and data-
poor scales for predictive multiscale computational modeling of biological systems.
项目摘要
肝癌是全球主要的健康问题,导致全球第三大癌症死亡。诊断
通常发生在晚期,此时肝肿瘤在多个中具有复杂的肿瘤/基质相互作用
空间和时间尺度。由此产生的多尺度相互作用驱动肿瘤的进展和治疗性
回复。拟议的项目将开发新的数学/计算技术来建模分子,
细胞,肿瘤和器官尺度,以阐明驱动肝癌进展的机制并预测
对靶向治疗药的反应。调查员团队非常适合开发拟议的
肝细胞癌(HCC)的多尺度模型,这是最常见的肝癌类型。专业知识
这四个PIS/PD是协同作用,结合了癌症的最先进的多尺度计算模型(博士
popel)具有使用生物信息学分析(Fortig博士)推断出的分子和细胞特征
ART 3D体外器官模型(Ewald博士)和HCC的体内小鼠模型(Tran博士)。整合的
提案的实验/计算设计将导致预测计算的新算法
HCC中治疗反应的建模。我们包括用于模型开发的广泛实验研究,
参数调整和验证。特定目标1将在生物信息上推断出重要的信号通路
癌症和基质细胞之间的串扰,整合细胞内信号传导和3D细胞外模型
配体运输和生化反应,并将其嵌入基于代理的细胞命运决策规则
细胞剂的模型导致多尺度混合模型。该模型将通过磷酸化进行参数化
通过生物信息学分析鉴定的相关配体刺激下的蛋白质组学数据,并随着生长的增长
来自共培养的癌症,基质细胞和类器官的侵袭,蛋白质组学和基因组数据;独立的
数据将用于模型验证。我们将使用此模型预测3D体外器官中的结果
HCC的模型。特定的目标2将扩展并适应该混合模型以建模肿瘤微环境
为了说明药代动力学和药效学,肝脏的3D几何形状,分子
从生物信息学分析推断出体内和细胞组成的相互作用。最后,特定的目标3将
开发新的生物信息学分析算法,以通过细胞剂的分布和
来自癌症基因组图集(TCGA)基因组和蛋白质组学数据的分子状态以预测功效
在人肝癌的多种遗传背景下有针对性的治疗剂。该项目将开发
创新的计算技术以整合来自分子和细胞量表的特征
基因组学和蛋白质组学分析具有多尺度计算模型,以预测治疗反应。这
由此产生的计算算法将解决融合数据丰富和数据融合的成像尖端挑战
生物系统的预测多尺度计算建模的尺度较差。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Josef Ewald其他文献
Andrew Josef Ewald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Josef Ewald', 18)}}的其他基金
Mapping the single cell state basis of metastasis in space and time
绘制空间和时间转移的单细胞状态基础
- 批准号:
10738579 - 财政年份:2023
- 资助金额:
$ 60.79万 - 项目类别:
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
- 批准号:
10372006 - 财政年份:2018
- 资助金额:
$ 60.79万 - 项目类别:
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
- 批准号:
10524181 - 财政年份:2018
- 资助金额:
$ 60.79万 - 项目类别:
Integrating bioinformatics into multiscale models for hepatocellular carcinoma
将生物信息学整合到肝细胞癌的多尺度模型中
- 批准号:
9891969 - 财政年份:2018
- 资助金额:
$ 60.79万 - 项目类别:
相似国自然基金
非光滑Dirac方程的高效数值算法和分析
- 批准号:12371395
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于深度学习模型的等位特异DNA甲基化识别算法开发及分析研究
- 批准号:62301194
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相场模型时空高精度算法的构造与分析
- 批准号:12371396
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
概率约束条件下非线性系统混合最优控制的数值算法设计、分析与应用
- 批准号:62363005
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
相似海外基金
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 60.79万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 60.79万 - 项目类别:
Investigating the Protective Efficacy of SIV/HIV T and B cell Immunity Induced by RNA Replicons
研究 RNA 复制子诱导的 SIV/HIV T 和 B 细胞免疫的保护功效
- 批准号:
10673223 - 财政年份:2023
- 资助金额:
$ 60.79万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 60.79万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 60.79万 - 项目类别: