Programmed Differentiation Circuits for Organoids using Meso-Microfluidics

使用介观微流体对类器官进行编程分化电路

基本信息

  • 批准号:
    9896824
  • 负责人:
  • 金额:
    $ 60.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-17 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

We propose a new platform that leverages synthetic biology genetic circuits and micro/mesofluidic instrumentation to rapidly advance the field of organoids. Specifically, we will genetically engineer self- organizing tissues from human pluripotent stem cells into co-developed liver and pancreas organoids possessing vascularization and other mature properties, such as adult level albumin production. The application of synthetic biology to organoid development (programmable organoids) provides an exciting new opportunity for engineering and testing of organoids encoding live cell sensors of cell state and for embedding circuits that express cell-type and cell-state specific transcription factors. We will engineer novel microfluidic and mesofluidic platforms to enable low cost and high throughput development and testing of programmable organoids. Our hypothesis is that co-development of hiPSC-derived liver and pancreas provides cell-cell interactions that contribute to vascularization and other important elements in organoid development that will lead to mature organ formation. To test our hypothesis, we will genetically encode live-cell sensors to monitor liver organoid develop, co-develop liver and pancreas organoids, and create genetic circuits that lead to mature organoid formation. We will use synthetic classifier genetic circuits that evaluate changes in cell state in real time, and generate relevant protein outputs for driving differentiation in a cell-type specific manner. This these circuits will enable autonomous generation of new and improved versions of organoids, including mature liver organoids and co-developed liver/pancreas organoids. Determining the precise spatiotemporal nature of cell state transitions and the relevant transcription factors to drive differentiation is not only essential for creating new and effective organoid developmental programs, but will also provide important scientific insights to understanding the fine aspects of differentiation and co-development. Successful achievement of our aims will have a broad impact in the areas of gene therapy, drug testing, and personalized medicine. For example, the ability to co-develop matched organoid systems will enable patient-specific drug development (e.g. for cancer therapy) that is more accurate than expensive and controversial alternatives, such as the use of humanized mice. This work will also support the long-term goal of producing mature organoids and organ systems suitable for transplantation.
我们提出了一个新平台,该平台利用合成生物学遗传回路和微/中流体的平台 仪器以快速前进器官的领域。具体来说,我们将基因工程师自我自我 从人多能干细胞中组织组织成共同发育的肝脏和胰腺器官 具有血管形成和其他成熟特性,例如成人水平的白蛋白产生。这 合成生物学在器官开发中的应用(可编程器官)提供了令人兴奋的新的 编码细胞态的活细胞传感器和嵌入的类器官的工程和测试的机会 表达细胞类型和细胞态特定转录因子的电路。我们将设计新颖的微流体 和中流体平台,以实现低成本和高吞吐量的开发和可编程的测试 器官。我们的假设是hipsc衍生的肝脏和胰腺的共同开发提供细胞细胞 有助于有助于血管形成和器官发育中其他重要因素的相互作用 导致成熟器官形成。为了检验我们的假设,我们将基因编码活细胞传感器来监视 肝脏器官发展,共发育肝脏和胰腺器官,并创建导致的遗传回路 成熟的器官形成。我们将使用合成分类器遗传回路来评估细胞状态的变化 实时,并生成相关的蛋白质输出,以特定于细胞类型的方式驱动分化。这 这些电路将能够自动生成新的和改进的器官版本,包括成熟 肝脏类器官和联合发育的肝脏/胰腺器官。确定的精确时空性质 细胞状态过渡和驱动分化的相关转录因子不仅对 创建新的有效的器官发展计划,但也将提供重要的科学见解 理解分化和共同开发的精细方面。成功实现我们的目标 将对基因疗法,药物测试和个性化医学领域产生广泛的影响。例如, 共同开发的匹配器官系统的能力将使患者特定的药物开发(例如 癌症治疗)比昂贵且有争议的替代品更准确,例如使用 人源化的小鼠。这项工作还将支持生产成熟的器官和器官的长期目标 适合移植的系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RON WEISS其他文献

RON WEISS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RON WEISS', 18)}}的其他基金

Genetically Programmed Pancreatic Organoids with Self-Adaptive Multi-Lineage Population Control
具有自适应多谱系群体控制的基因编程胰腺类器官
  • 批准号:
    10704027
  • 财政年份:
    2021
  • 资助金额:
    $ 60.13万
  • 项目类别:
Genetically Programmed Pancreatic Organoids with Self-Adaptive Multi-Lineage Population Control
具有自适应多谱系群体控制的基因编程胰腺类器官
  • 批准号:
    10470862
  • 财政年份:
    2021
  • 资助金额:
    $ 60.13万
  • 项目类别:
Genetically Programmed Pancreatic Organoids with Self-Adaptive Multi-Lineage Population Control
具有自适应多谱系群体控制的基因编程胰腺类器官
  • 批准号:
    10278596
  • 财政年份:
    2021
  • 资助金额:
    $ 60.13万
  • 项目类别:
RNA circuits for cell state determination in mammalian cells in vitro and in vivo
用于体外和体内哺乳动物细胞状态测定的RNA电路
  • 批准号:
    9232096
  • 财政年份:
    2016
  • 资助金额:
    $ 60.13万
  • 项目类别:
Reprogramming the tumor microenvironment via self-amplified RNA (SafeR) circuits
通过自扩增 RNA (SafeR) 电路重新编程肿瘤微环境
  • 批准号:
    9206914
  • 财政年份:
    2016
  • 资助金额:
    $ 60.13万
  • 项目类别:
RNA circuits for cell state determination in mammalian cells in vitro and in vivo
用于体外和体内哺乳动物细胞状态测定的RNA电路
  • 批准号:
    9106976
  • 财政年份:
    2016
  • 资助金额:
    $ 60.13万
  • 项目类别:
MIT Center for Integrative Synthetic Biology
麻省理工学院综合合成生物学中心
  • 批准号:
    8741970
  • 财政年份:
    2013
  • 资助金额:
    $ 60.13万
  • 项目类别:
Genetic circuits for high-throughput, multi-sensory, live cell microRNA prof
用于高通量、多感官、活细胞 microRNA 教授的遗传电路
  • 批准号:
    8601529
  • 财政年份:
    2013
  • 资助金额:
    $ 60.13万
  • 项目类别:
Genetic circuits for high-throughput, multi-sensory, live cell microRNA prof
用于高通量、多感官、活细胞 microRNA 教授的遗传电路
  • 批准号:
    8421989
  • 财政年份:
    2013
  • 资助金额:
    $ 60.13万
  • 项目类别:
MIT Center for Integrative Synthetic Biology
麻省理工学院综合合成生物学中心
  • 批准号:
    8901199
  • 财政年份:
    2013
  • 资助金额:
    $ 60.13万
  • 项目类别:

相似国自然基金

共和盆地东北部地区隆升剥蚀过程对干热岩形成就位的影响:来自低温热年代学的制约
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
朱鹮野生种群营养生态位对繁殖成就的影响及保护对策研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
成就目标视角下建言韧性的形成机制与作用效果研究
  • 批准号:
    72102228
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于目标成就评量的社区中医药健康管理服务评价及优化策略研究
  • 批准号:
    71874047
  • 批准年份:
    2018
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
科研人员流动与职业成就的关系研究
  • 批准号:
    71874049
  • 批准年份:
    2018
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Preventing invasive prostate cancer
预防侵袭性前列腺癌
  • 批准号:
    10566591
  • 财政年份:
    2023
  • 资助金额:
    $ 60.13万
  • 项目类别:
Core A: Administrative Core
核心A:行政核心
  • 批准号:
    10555893
  • 财政年份:
    2023
  • 资助金额:
    $ 60.13万
  • 项目类别:
Identifying human-specific neural progenitors and their role in neurodevelopment
识别人类特异性神经祖细胞及其在神经发育中的作用
  • 批准号:
    10662868
  • 财政年份:
    2023
  • 资助金额:
    $ 60.13万
  • 项目类别:
Language Input as a Mechanism Underlying Socioeconomic Disparities in Neurocognitive Development
语言输入作为神经认知发展社会经济差异的机制
  • 批准号:
    10706839
  • 财政年份:
    2023
  • 资助金额:
    $ 60.13万
  • 项目类别:
Validation of imaging brain tumor metabolism using deuterated glucose
使用氘化葡萄糖验证脑肿瘤代谢成像
  • 批准号:
    10560260
  • 财政年份:
    2023
  • 资助金额:
    $ 60.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了