Genetically Programmed Pancreatic Organoids with Self-Adaptive Multi-Lineage Population Control
具有自适应多谱系群体控制的基因编程胰腺类器官
基本信息
- 批准号:10470862
- 负责人:
- 金额:$ 64.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectBiologicalBiologyBlood VesselsCell LineageCellsChemicalsComplexDIF factorDevelopmentDevelopmental BiologyEctopic ExpressionEndocrineEndodermEndoderm CellEndoribonucleasesEngineeringExhibitsFeedbackFibroblastsFunctional disorderGene ExpressionGenesGeneticGenetic EngineeringGrowth FactorHepaticHumanIn VitroIndividualInvestigationLeadLiverManualsMeasuresMesodermMethodsModelingOrganOrganogenesisOrganoidsOutputPancreasPatientsPhysiologyPopulationPopulation ControlProductionProtocols documentationRegulationReproducibilityResearchSignal TransductionSpecific qualifier valueStructureSystemTechniquesTissuesWorkbasecell typecontrol theorydesigndevelopmental plasticityin vivoinduced pluripotent stem cellinnovationnovelpancreas developmentprogenitorprogramsratiometricrecombinasesensorsingle-cell RNA sequencingsmall moleculestem cell biologystem cell differentiationsynthetic biologytranscription factor
项目摘要
Major advancements in stem cell biology have paved the way for innovation in organoid engineering. Organoids
are 3D tissues derived from human induced pluripotent stem cells (hiPSCs) generated by reprogramming patient-
specific adult cells, such as fibroblasts. While organoids show great promise as testbeds for investigating devel-
opmental biology, current methods for organoid production are limited by their reliance on external inputs, such
as growth factors and small molecules, which affect cells imprecisely and give rise to immature organoids that do
not faithfully recapitulate in vivo physiology and functionality. The resulting organoids are size-constrained, lim-
ited to a small set of cell types, and do not generally develop mature tissue that exhibits the functionality of fully
developed organs. While we have previously demonstrated genetic programs that enable organoids to generate
all requisite cell types in liver, variability in cell ratios remains an open challenge for achieving reproducible, high
quality organoids. Further, progress is blocked by the inability to reliably guide multi-lineage specification, the lack
of precise timing of multistep differentiation, and the inability to make robust bifurcation decisions that determine
the ratios of the resulting cell types.
To overcome these obstacles, we will combine synthetic biology, developmental biology, and control theory to
design novel open and closed loop genetic controllers that individually guide differentiation from within each cell
to form unique new 3D tissue: vascularized pancreatic organoids with defined ratios of endocrine and exocrine
cells. We will demonstrate how these new organoids can serve as more sophisticated and comprehensive models
for investigating developmental biology principles. This work will spearhead a transformation in organoid synthesis
by shifting the field from manual addition of inductive chemical signals to cell type conditional, self-timed ectopic
expression of transcription factors that induce differentiation. Building upon the premise that 1) gene sensors can
detect cell types specific to differentiation stages, and 2) at least in certain important cases, regulated expression
of lineage-specifying transcription factors can guide differentiation to the next stage, our main hypothesis is that
feedback regulation of cell lineage bifurcation decisions can lead to more robust and reproducible sub-population
ratios in organoids in comparison to open loop approaches. Our organoids will contain synthetic developmental
programs that are self-timed and globally-orchestrated, with cells working together to generate the requisite ratios.
We will create a platform for programmed bifurcation decisions that can be used for other differentiation steps
in the pancreas, and more broadly to other organoid and tissue types. We will use this platform to perform
novel developmental studies to systematically vary the ratio of endocrine to exocrine cells and measure the
consequences on exocrine/endocrine cells and their differentiation and function. The ability to precisely vary the
ratio while studying gene expression profiles, the organoid secretome, and its affects on target cells will provide
invaluable benefit in the investigation of pancreas development and dysfunction.
干细胞生物学的重大进步为类器官工程的创新铺平了道路。
是源自人类诱导多能干细胞 (hiPSC) 的 3D 组织,通过对患者进行重新编程而生成 -
特定的成体细胞,例如成纤维细胞,而类器官作为研究开发的试验台显示出巨大的前景。
在光学生物学中,当前的类器官生产方法因其对外部输入的依赖而受到限制,例如
作为生长因子和小分子,它们不精确地影响细胞并产生不成熟的类器官,
不能忠实地再现体内的生理学和功能。所得的类器官尺寸受限、有限。
它只限于一小组细胞类型,并且通常不会发育出表现出完全功能的成熟组织
虽然我们之前已经证明了能够生成类器官的基因程序。
肝脏中所有必需的细胞类型,细胞比例的变异性仍然是实现可重复、高水平的公开挑战
此外,由于无法可靠地指导多谱系规范,缺乏高质量的类器官,进展受到阻碍。
多步微分的精确计时,以及无法做出稳健的分叉决策来确定
所得细胞类型的比率。
为了克服这些障碍,我们将结合合成生物学、发育生物学和控制理论
设计新颖的开环和闭环遗传控制器,单独指导每个细胞内的分化
形成独特的新 3D 组织:具有明确内分泌和外分泌比例的血管化胰腺类器官
我们将展示这些新的类器官如何作为更复杂和更全面的模型。
这项工作将引领类器官合成的变革。
通过将领域从手动添加感应化学信号转移到细胞类型条件、自定时异位
诱导分化的转录因子的表达基于以下前提:1)基因传感器可以
检测特定于分化阶段的细胞类型,以及 2) 至少在某些重要情况下,调节表达
谱系特异性转录因子可以指导分化进入下一阶段,我们的主要假设是
细胞谱系分叉决策的反馈调节可以产生更稳健和可重复的亚群
与开环方法相比,我们的类器官将包含合成发育方法。
自定时和全球协调的程序,细胞共同工作以产生必要的比率。
我们将创建一个用于编程分叉决策的平台,可用于其他微分步骤
在胰腺中,以及更广泛的其他器官和组织类型中,我们将使用这个平台来执行。
新颖的发育研究系统地改变内分泌细胞与外分泌细胞的比例并测量
对外分泌/内分泌细胞及其分化和功能的影响。
在研究基因表达谱、类器官分泌组及其对靶细胞的影响时的比率将提供
在胰腺发育和功能障碍的研究中具有不可估量的益处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RON WEISS其他文献
RON WEISS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RON WEISS', 18)}}的其他基金
Genetically Programmed Pancreatic Organoids with Self-Adaptive Multi-Lineage Population Control
具有自适应多谱系群体控制的基因编程胰腺类器官
- 批准号:
10704027 - 财政年份:2021
- 资助金额:
$ 64.65万 - 项目类别:
Genetically Programmed Pancreatic Organoids with Self-Adaptive Multi-Lineage Population Control
具有自适应多谱系群体控制的基因编程胰腺类器官
- 批准号:
10278596 - 财政年份:2021
- 资助金额:
$ 64.65万 - 项目类别:
Programmed Differentiation Circuits for Organoids using Meso-Microfluidics
使用介观微流体对类器官进行编程分化电路
- 批准号:
9896824 - 财政年份:2018
- 资助金额:
$ 64.65万 - 项目类别:
RNA circuits for cell state determination in mammalian cells in vitro and in vivo
用于体外和体内哺乳动物细胞状态测定的RNA电路
- 批准号:
9232096 - 财政年份:2016
- 资助金额:
$ 64.65万 - 项目类别:
Reprogramming the tumor microenvironment via self-amplified RNA (SafeR) circuits
通过自扩增 RNA (SafeR) 电路重新编程肿瘤微环境
- 批准号:
9206914 - 财政年份:2016
- 资助金额:
$ 64.65万 - 项目类别:
RNA circuits for cell state determination in mammalian cells in vitro and in vivo
用于体外和体内哺乳动物细胞状态测定的RNA电路
- 批准号:
9106976 - 财政年份:2016
- 资助金额:
$ 64.65万 - 项目类别:
Genetic circuits for high-throughput, multi-sensory, live cell microRNA prof
用于高通量、多感官、活细胞 microRNA 教授的遗传电路
- 批准号:
8601529 - 财政年份:2013
- 资助金额:
$ 64.65万 - 项目类别:
Genetic circuits for high-throughput, multi-sensory, live cell microRNA prof
用于高通量、多感官、活细胞 microRNA 教授的遗传电路
- 批准号:
8421989 - 财政年份:2013
- 资助金额:
$ 64.65万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 64.65万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 64.65万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 64.65万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 64.65万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 64.65万 - 项目类别: