Role and Regulation of Skeletal Muscle Mitochondrial Dynamics in Type 2 Diabetes
骨骼肌线粒体动力学在 2 型糖尿病中的作用和调节
基本信息
- 批准号:9767119
- 负责人:
- 金额:$ 65.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcuteAttenuatedBioenergeticsBiopsyCell modelClosure by clampDataDiabetes MellitusDiseaseDynaminEventExerciseFatty acid glycerol estersFunctional disorderFuture GenerationsGenus HippocampusGlucose ClampHigh Pressure Liquid ChromatographyHumanHydrogen PeroxideImpairmentIn VitroIndirect CalorimetryInfusion proceduresInsulinInsulin ResistanceLeadLinkLipidsMeasuresMembraneMembrane PotentialsMetabolismMitochondriaMolecularMuscleMuscle CellsMuscle FibersMuscle MitochondriaNon obeseNon-Insulin-Dependent Diabetes MellitusNonesterified Fatty AcidsNutrientOPA1 geneObesityOrganellesPINK1 genePathway interactionsPatientsPeripheralPhosphorylationPhysiologicalPrediabetes syndromeProcessProductionProtein IsoformsProteinsReactive Oxygen SpeciesRegulationResearchReticulumRoleSkeletal MuscleStainsStructureTestingThinnessTissuesbasediabetes mellitus therapyevidence baseexercise trainingexperimental studyexpression cloningfirst-in-humanglucose metabolismglucose uptakehuman diseasein vivoinnovationinsightinsulin sensitivityinsulin signalingknock-downlipid metabolismmetabolic phenotypemitochondrial membranemitochondrial permeability transition porenon-diabeticnovelnovel therapeuticsoxidationprospectiveprotein expressionpublic health relevancerecruitsmall hairpin RNAtooltransmission processvolunteer
项目摘要
DESCRIPTION (provided by applicant): The traditional view of mitochondria as isolated, spherical, energy producing organelles is undergoing a revolutionary transformation. Emerging data show that mitochondria form a dynamic networked reticulum that is regulated by cycles of fission and fusion. The discovery of a number of proteins that regulate these activities has led to
important advances in understanding human disease. We have demonstrated that activation of dynamin related protein 1 (Drp1), a protein that controls mitochondrial fission, is reduced following exercise in prediabetes, and the decrease is linked to increased insulin sensitivity and fat oxidation. We now propose to build on this research and test the hypothesis that mitochondrial dynamics is a key mechanism of insulin resistance in type 2 diabetes. Our central hypothesis is that in diabetes elevated mitochondrial lipid metabolism causes recruitment and activation of Drp1 - likely through increased reactive oxygen species, leading to increased mitochondrial fragmentation and opening of the mitochondrial permeability transition pore. In Aim 1a we will perform in vivo and in vitro studies of human skeletal muscle mitochondrial dynamics across the metabolic phenotype ranging from patients with type 2 diabetes, to obese, to lean healthy controls. Translational first-in-man studies will use an acute lipid challenge (Aim
1b) and exercise training (Aim 1c) to investigate the physiological significance of altered skeleta muscle mitochondrial dynamics on insulin sensitivity in humans. Insulin resistance will be assessed using euglycemic hyperinsulinemic clamps, and in vivo substrate metabolism will be measured using indirect calorimetry. Mitochondrial fission/fusion, fragmentation, function, membrane potential, mitochondrial reactive oxygen species, and the accumulation of lipid intermediates will be assessed from muscle biopsy tissue and permeabilized muscle fibers. In Aim 2, we will use inhibition and expression cloning experiments to directly examine the impact of manipulating mitochondrial fragmentation in intact ex vivo cultured human skeletal muscle cells. This research will provide a comprehensive and complementary analysis of skeletal muscle mitochondrial dynamics, and will also generate novel data on the link between exercise and nutrient regulation of mitochondrial dynamics and function in type 2 diabetes. The experimental approach harnesses innovative molecular and cellular tools, interfaced with physiologically significant human studies to obtain meaningful data on insulin resistance, and has the potential to generate insights that will lead to new diabetes therapies for future generations.
描述(由申请人提供):线粒体作为孤立的、球形的、产生能量的细胞器的传统观点正在经历革命性的转变。新出现的数据表明,线粒体形成了受裂变和融合循环调节的动态网络网状结构。调节这些活动的蛋白质数量导致
我们已经证明,动力相关蛋白 1 (Drp1)(一种控制线粒体裂变的蛋白质)的激活在糖尿病前期运动后会减少,并且这种减少与胰岛素敏感性和脂肪氧化的增加有关。提议以这项研究为基础,并测试线粒体动力学是 2 型糖尿病胰岛素抵抗的关键机制的假设,我们的中心假设是,在糖尿病中,线粒体脂质代谢升高可能通过增加反应性导致 Drp1 的募集和激活。在目标 1a 中,我们将对人体骨骼肌线粒体动力学进行体内和体外研究,涵盖从 2 型糖尿病患者到肥胖患者的代谢表型。转化性首次人体研究将使用急性脂质挑战(Aim)
1b)和运动训练(目标1c),以研究改变的骨骼肌线粒体动力学对人类胰岛素敏感性的生理意义,将使用正常血糖高胰岛素钳评估胰岛素抵抗,并使用间接热量测定法测量体内底物代谢。 /将从肌肉活检组织和透化肌肉中评估融合、碎片、功能、膜电位、线粒体活性氧和脂质中间体的积累在目标 2 中,我们将使用抑制和表达克隆实验来直接检查在完整的离体培养的人类骨骼肌细胞中操纵线粒体碎片的影响,这项研究将为骨骼肌线粒体动力学提供全面和补充的分析。还生成了关于 2 型糖尿病线粒体动力学和功能的运动和营养调节之间联系的新数据。该实验方法利用创新的分子和细胞工具,与具有生理意义的人体研究相结合,以获得有关胰岛素抵抗的有意义的数据。并有潜力产生见解,为子孙后代带来新的糖尿病疗法。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Brown and Beige Adipose Tissue: Therapy for Obesity and Its Comorbidities?
- DOI:10.1016/j.ecl.2016.04.010
- 发表时间:2016-09
- 期刊:
- 影响因子:4.5
- 作者:Mulya, Anny;Kirwan, John P.
- 通讯作者:Kirwan, John P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN P. KIRWAN其他文献
JOHN P. KIRWAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN P. KIRWAN', 18)}}的其他基金
Louisiana Clinical and Translational Science Center
路易斯安那州临床和转化科学中心
- 批准号:
10415589 - 财政年份:2021
- 资助金额:
$ 65.87万 - 项目类别:
Louisiana Clinical and Translational Science Center
路易斯安那州临床和转化科学中心
- 批准号:
10258534 - 财政年份:2020
- 资助金额:
$ 65.87万 - 项目类别:
Role of the skeletal muscle/pancreatic axis in type 2 diabetes
骨骼肌/胰轴在 2 型糖尿病中的作用
- 批准号:
9014518 - 财政年份:2015
- 资助金额:
$ 65.87万 - 项目类别:
Role and Regulation of Skeletal Muscle Mitochondrial Dynamics in Type 2 Diabetes
骨骼肌线粒体动力学在 2 型糖尿病中的作用和调节
- 批准号:
9336293 - 财政年份:2015
- 资助金额:
$ 65.87万 - 项目类别:
Role of the skeletal muscle/pancreatic axis in type 2 diabetes
骨骼肌/胰轴在 2 型糖尿病中的作用
- 批准号:
8815628 - 财政年份:2015
- 资助金额:
$ 65.87万 - 项目类别:
Louisiana Clinical and Translational Science Center - N3C supplement
路易斯安那临床和转化科学中心 - N3C 补充品
- 批准号:
10884657 - 财政年份:2012
- 资助金额:
$ 65.87万 - 项目类别:
Health Disparities and SARS-COV-2 Evolution: A Focused Viral Genomics Study
健康差异和 SARS-COV-2 进化:一项重点病毒基因组学研究
- 批准号:
10381371 - 财政年份:2012
- 资助金额:
$ 65.87万 - 项目类别:
Louisiana Clinical and Translational Science Center
路易斯安那州临床和转化科学中心
- 批准号:
10677678 - 财政年份:2012
- 资助金额:
$ 65.87万 - 项目类别:
Louisiana Clinical and Translational Science Center
路易斯安那州临床和转化科学中心
- 批准号:
10513330 - 财政年份:2012
- 资助金额:
$ 65.87万 - 项目类别:
相似国自然基金
II型螺旋神经元P2X3受体在长期低强度噪声暴露致耳蜗去掩蔽效应减弱中的作用机制研究
- 批准号:82301306
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
绵羊甘露聚糖结合凝集素(MBL)在MO人工感染中致病性减弱的作用机制研究
- 批准号:32360812
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
受HPV E6/E7调控的新lncRNA CRL通过减弱铁死亡抑制宫颈上皮内瘤变进展的机制研究
- 批准号:82301838
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新冠病毒变异株毒力减弱的分子机制及规律研究
- 批准号:82372223
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
长白山阔叶红松林冻融期土壤N2O排放对高氮沉降减弱的响应研究
- 批准号:42301052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitochondrial regulation of nociceptor function
伤害感受器功能的线粒体调节
- 批准号:
10644865 - 财政年份:2023
- 资助金额:
$ 65.87万 - 项目类别:
Role of heat shock transcription factors (HSFs) in hematological malignancies
热休克转录因子(HSF)在血液恶性肿瘤中的作用
- 批准号:
10568307 - 财政年份:2023
- 资助金额:
$ 65.87万 - 项目类别:
mitoNEET as a therapeutic target for mitigating ischemic brain injury following MCAO
mitoNEET 作为减轻 MCAO 后缺血性脑损伤的治疗靶点
- 批准号:
10735923 - 财政年份:2023
- 资助金额:
$ 65.87万 - 项目类别:
Glutamine Metabolism in Alveolar Macrophages following Influenza A Infection
甲型流感感染后肺泡巨噬细胞的谷氨酰胺代谢
- 批准号:
10607319 - 财政年份:2023
- 资助金额:
$ 65.87万 - 项目类别:
Mechanism of mitochondria-induced proteostatic signaling and progressive muscle atrophy during aging.
衰老过程中线粒体诱导的蛋白质抑制信号传导和进行性肌肉萎缩的机制。
- 批准号:
10825174 - 财政年份:2023
- 资助金额:
$ 65.87万 - 项目类别: