Synthesis, structure and biological effects of carcinogen/drug-induced bulky, intercalatable N7-alkylguanine lesions
致癌物/药物引起的大块插入式N7-烷基鸟嘌呤损伤的合成、结构和生物学效应
基本信息
- 批准号:9754147
- 负责人:
- 金额:$ 27.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcridinesAffectAflatoxin B1Alkylating AgentsAlkylationBase PairingBiochemicalBiologicalBiological AssayBiological ModelsBiological ProcessCarcinogensChemicalsCisplatinComplexCrystallizationDNADNA AdductsDNA MaintenanceDNA Modification ProcessDNA RepairDNA StructureDNA biosynthesisDNA-Directed DNA PolymeraseDepurinationDevelopmentEscherichia coliEthylenesEtiologyEvaluationExcisionGenetic TranscriptionGoalsGuanineHeterogeneityHourIn VitroKnowledgeLesionMalignant NeoplasmsMechlorethamineMediatingMethodsMolecularMolecular ConformationMustardMutagenesisMutagensNMR SpectroscopyNitrogenNitrosaminesNucleosidesNucleotide Excision RepairOligonucleotidesPharmaceutical PreparationsPhasePlatinumPropertyProteinsPublic HealthQuinonesReportingResearchRetrievalRoleSafroleSiteSolidStructureSystemTestingThermodynamicsThymineTobaccoadductantitumor agentbasecancer cellcarcinogenesiscrosslinkdesignerythritol anhydrideexpectationin vivoinsightintercalationionizationleinamycinnovelpolymerizationprogramsrepairedstyrene oxidethree dimensional structure
项目摘要
Covalent modification of DNA by alkylating mutagens and carcinogens is closely associated with cancer
development. A wide variety of alkylating agents are known to attack DNA to produce N7-alkylguanine (N7-
alkylG) and alkyl formamidopyrimidine (alkyl-FapyG) lesions. Despite the major advances in the
characterization of chemical, biochemical, and/or mutagenic properties of the lesions, our molecular-level
understanding of structural and biological effects of carcinogen/drug-induced bulky intercalatable N7-alkylG
and alkyl-FapyG adducts is still limited, except for a few lesions such as aflatoxin B1-N7G adducts. This
knowledge gap had been due in part to a technical limitation in generating sufficient quantities of DNA
containing site-specific incorporated N7-alkylG; although N7-alkylG lesions in duplex DNA have half-lives of
several hours to days, the lesions in nucleosides are chemically extremely unstable to rapidly undergo
spontaneous depurination, thereby precluding the use of the solid-phase method for the synthesis of N7-
alkylG-containing DNA. We previously developed a transition-state destabilization strategy to solve the
chemical instability problem and reported the first crystal structure of an N7-alkylG-containing DNA. Our
central hypothesis of the proposed research is that bulky, intercalatable N7-alkylG and alkyl-FapyG lesions
affect DNA structure and biological processes including DNA replication and mutagenesis. Our long-term
research goal is to elucidate the structural and biological effects of carcinogen/drug-induced N7-alkylG and
N3-alkyladenine lesions. The objectives here are to elucidate the impacts of N7-alkylG and alkyl-FapyG
lesions on DNA structure, replication and mutagenesis and to dissect the DNA repair mechanism of the
lesions. To accomplish this objective, we propose synthesis, structure determination, and biochemical
evaluation of N7-alkylG and alkyl-FapyG lesions that are induced by potent carcinogens/drugs including N-
methylbenzyl nitrosamine, safrole, ptaquiloside, acridine half-mustard ICR-191, nitrogen half-mustard, and a
platinum-based “alkylating-like” agent. As a next step for achieving our long-term goals, we have designed
three Specific Aims that are 1) Evaluating the impact of the N7-alkylG and alkyl-FapyG lesions on the
structure and stability of duplex DNA; 2) Elucidating the mutagenesis mechanisms of the lesions; and 3)
Delineating the DNA repair mechanism for the lesions. Our expectation is that the accomplishment of the
proposed research would advance our molecular-level understanding of the impact of intercalatable N7-alkylG
and alkyl-FapyG adducts on DNA structure, replication and mutagenesis and the repair mechanism of the
lesions, thereby providing new insights into the etiology of alkylation-induced mutagenesis and carcinogenesis.
In addition, crystal structures of N7-alkylG-containing DNA would facilitate a structure-based design and
development of novel alkylating agents that can alter DNA structure and biological processes.
通过烷基化诱变剂和致癌物对 DNA 进行共价修饰与癌症密切相关
已知多种烷化剂可攻击 DNA 产生 N7-烷基鸟嘌呤 (N7-)。
尽管在这方面取得了重大进展,但烷基G)和烷基甲酰胺嘧啶(烷基-FapyG)损伤。
病变的化学、生化和/或诱变特性的表征,我们的分子水平
了解致癌物/药物诱导的大体积插入 N7-烷基G 的结构和生物效应
除了黄曲霉毒素B1-N7G加合物等少数病变外,烷基-FapyG加合物仍然有限。
知识差距部分是由于产生足够数量 DNA 的技术限制造成的
含有位点特异性掺入的 N7-烷基G;尽管双链 DNA 中的 N7-烷基G 损伤的半衰期为
几个小时到几天,核苷的损伤在化学上极其不稳定,会迅速发生
自发脱嘌呤,从而排除了使用固相法合成 N7-
我们之前开发了一种过渡态不稳定策略来解决这个问题。
化学不稳定性问题,并报道了第一个含 N7-烷基 G 的 DNA 晶体结构。
拟议研究的中心假设是庞大的、可插入的 N7-烷基G 和烷基-FapyG 病变
影响 DNA 结构和生物过程,包括 DNA 复制和突变。
研究目标是阐明致癌物/药物诱导的 N7-烷基G 和 N7-烷基G 的结构和生物效应
N3-烷基腺嘌呤损伤的目的是阐明 N7-烷基G 和烷基-FapyG 的影响。
DNA结构、复制和突变的损伤,并剖析DNA修复机制
为了实现这一目标,我们提出了合成、结构测定和生化。
评估由强效致癌物/药物(包括 N-)引起的 N7-烷基G 和烷基-FapyG 病变
甲基苄基亚硝胺、黄樟素、ptaquiloside、吖啶半芥子ICR-191、氮半芥子和
作为实现我们长期目标的下一步,我们设计了基于铂的“类烷基化”剂。
三个具体目标是 1) 评估 N7-烷基G 和烷基-FapyG 损伤对
双链 DNA 的结构和稳定性;2) 阐明病变的诱变机制;3)
描绘损伤的 DNA 修复机制是我们的期望。
拟议的研究将促进我们对可插入 N7-烷基G 的影响的分子水平理解
和烷基-FapyG 加合物对 DNA 结构、复制和突变以及 DNA 修复机制的影响
病变,从而为烷基化诱导的突变和致癌的病因学提供新的见解。
此外,含有 N7-烷基G 的 DNA 的晶体结构将有助于基于结构的设计和
开发可以改变 DNA 结构和生物过程的新型烷化剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seongmin Lee其他文献
Seongmin Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seongmin Lee', 18)}}的其他基金
Studies of Chemically Labile Alkylation Damage in DNA
DNA 中化学不稳定烷基化损伤的研究
- 批准号:
10735154 - 财政年份:2023
- 资助金额:
$ 27.62万 - 项目类别:
Studies of Chemically Labile Alkylation Damage in DNA
DNA 中化学不稳定烷基化损伤的研究
- 批准号:
10769108 - 财政年份:2023
- 资助金额:
$ 27.62万 - 项目类别:
相似国自然基金
酶法降解花生粕中黄曲霉毒素B1的机理及对花生粕品质的影响
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于可视化检测方法研究Bolt区对Trametes coccinea AFB1降解酶催化性能的影响机制
- 批准号:31802103
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
黄曲霉中SUMO化修饰对黄曲霉毒素B1生物合成过程的影响及其机制
- 批准号:31700050
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
黄曲霉毒素B1对肿瘤细胞IGF1受体/IRS2信号通路及细胞迁移的影响
- 批准号:81272215
- 批准年份:2012
- 资助金额:65.0 万元
- 项目类别:面上项目
电解离子水降解黄曲霉毒素B1影响因子及反应机制研究
- 批准号:31071553
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Studies of Chemically Labile Alkylation Damage in DNA
DNA 中化学不稳定烷基化损伤的研究
- 批准号:
10735154 - 财政年份:2023
- 资助金额:
$ 27.62万 - 项目类别:
Studies of Chemically Labile Alkylation Damage in DNA
DNA 中化学不稳定烷基化损伤的研究
- 批准号:
10769108 - 财政年份:2023
- 资助金额:
$ 27.62万 - 项目类别:
Aflatoxin Exposure, Growth Faltering, and the Gut Microbiome among Children in Rural Guatemala
危地马拉农村儿童的黄曲霉毒素暴露、生长迟缓和肠道微生物组
- 批准号:
10586566 - 财政年份:2023
- 资助金额:
$ 27.62万 - 项目类别:
Project 4: Interrogating and harnessing age-related IFN signaling and innate immunity in HCC prevention and therapy
项目 4:在 HCC 预防和治疗中探究和利用与年龄相关的 IFN 信号传导和先天免疫
- 批准号:
10698110 - 财政年份:2021
- 资助金额:
$ 27.62万 - 项目类别:
Project 4: Interrogating and harnessing age-related IFN signaling and innate immunity in HCC prevention and therapy
项目 4:在 HCC 预防和治疗中探究和利用与年龄相关的 IFN 信号传导和先天免疫
- 批准号:
10270689 - 财政年份:2021
- 资助金额:
$ 27.62万 - 项目类别: