Studies of Chemically Labile Alkylation Damage in DNA
DNA 中化学不稳定烷基化损伤的研究
基本信息
- 批准号:10769108
- 负责人:
- 金额:$ 22.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2023-08-11
- 项目状态:已结题
- 来源:
- 关键词:AcridinesAffectAflatoxin B1Alkylating AgentsAlkylationAntineoplastic AgentsBase Excision RepairsBase PairingBiochemicalBiologicalBypassCandidate Disease GeneCarcinogensCellsChargeChemicalsChemistryComplexDNADNA AlkylationDNA DamageDNA Modification ProcessDNA StructureDNA biosynthesisDNA glycosylaseDNA-Directed DNA PolymeraseDepurinationDevelopmentDissociationElectrophoresisElectrophoretic Mobility Shift AssayEquilibriumEtiologyExcisionFluorineFrequenciesGenesGenetic TranscriptionGoalsGuanineHeterogeneityHourHumanImidazoleIn VitroInduced MutationIsomerismKetonesKineticsKnowledgeLesionLightMalignant NeoplasmsMechlorethamineMediatingModificationMolecular ConformationMustardMutagenesisMutagensMutationNicotineNitrosaminesNucleosidesNucleotidesPharmaceutical PreparationsPhasePlasmidsProcessPropertyPublic HealthQuinonesRelaxationReporterReportingResearchRoleSecondary LesionSiteSolidStructureSystemTechnologyTobaccoUracilX-Ray Crystallographyadductantitumor agentbasecarcinogenesisendonucleaseenolerythritol anhydridegenotoxicityin vivoinnovationinsightintercalationionizationknock-downleinamycinmutation assaynucleotide metabolismpreventprogramsrepair enzymerepair modelrepairedstructural biologystyrene oxidesuccesssynthetic constructtautomerthree dimensional structuretool
项目摘要
ABSTRACT
Alkylation DNA damage caused by alkylating agents promotes mutations and cancer development. Guanine N7
is targeted by a wide range of alkylating mutagens, carcinogens, and anticancer agents, producing the cationic
N7-alkylguanine (N7-alkylG) adducts as major lesions. These lesions have half-lives of several hours to days in
DNA and thus can affect DNA replication and transcription. The positively charged N7-alkylG lesions can also
undergo further modification to generate secondary lesions such as alkyl-formamidopyrimidine (alkyl-FapyG)
adducts. The recognition, repair, and mutagenesis mechanisms of many mutagen/carcinogen-induced N7-
alkylG and alkyl-FapyG lesions, except for a few lesions such as N7-aflatoxin B1-G and aflatoxin B1-FapyG
adducts, remain poorly characterized, thereby precluding a complete understanding of the contribution of these
major lesions to mutations and cancer development. For example, the mutagenic properties of the predominant
N7-alkylG adducts produced by the cancer-promoting styrene oxide are unknown. This knowledge gap has
been due in part to the technical difficulty in preparing a site-specific N7-alkylG- and alkyl-FapyG-containing
DNA, which is ascribed to the rapid depurination of N7-alkylG nucleosides and the facile isomerization of alkyl-
FapyG during solid-phase DNA synthesis. To overcome the stability issue of N7-alkylG nucleosides, we have
developed a 2’-fluorine technology that prevents spontaneous depurination by increasing the stability of N7-
alkylG nucleosides. To solve the isomerization problem of alkyl-FapyG, we have taken a post-synthetic
approach that produces alkyl-FapyG-containing DNA from N7-alkylG-containing DNA. Our preliminary studies
show that guanine N7 alkylation can influence base-pairing properties by facilitating the formation of the rare
enol tautomer, syn base conformation, and/or intercalation. Our central hypothesis is that N7-alkylG and alkyl-
FapyG adducts promote mutations and cancer development by altering the base-pairing properties of the
damaged guanine. Our long-term research goal is to elucidate the biological impacts of chemically labile
alkylation damages and their secondary lesions using innovative approaches such as the 2’-F chemistry, the
polβ host-guest-complex system, and post-synthetic DNA modification. The objective is to dissect the biological
consequences of N7-alkylG and alkyl-FapyG lesions induced by potent alkylating mutagens and anticancer
agents such as styrene oxide and nitrogen mustards. To accomplish this objective, we will characterize the base-
pairing properties and the recognition, mutagenesis, and repair mechanisms of N7-alkylG and alkyl-FapyG
adducts using combined tools of synthetic, biochemical, structural biology, and cellular approaches. The
successful execution of the proposed programs will greatly advance our knowledge of the impact of
carcinogen/drug-induced N7-alkylG and alkyl-FapyG lesions on the base pair conformation, tautomerism,
mutagenesis, recognition, and repair, thereby providing important insights into the alkylation damage-induced
mutations and cancer development.
抽象的
烷化剂引起的烷基化 DNA 损伤促进突变和癌症发展。
是多种烷基化诱变剂、致癌剂和抗癌剂的靶标,产生阳离子
N7-烷基鸟嘌呤(N7-烷基G)加合物是主要损伤,这些损伤的半衰期为数小时至数天。
因此,带正电荷的 N7-烷基G 损伤也可以影响 DNA 复制和转录。
进行进一步修饰以产生继发性损伤,例如烷基-甲酰胺嘧啶(烷基-FapyG)
许多诱变剂/致癌物诱导的 N7- 的识别、修复和诱变机制。
烷基G和黄曲霉毒素B1-FapyG病变,除N7-黄曲霉毒素B1-G和黄曲霉毒素B1-FapyG等少数病变外
加合物的特征仍然很差,因此无法完全理解它们的贡献
突变和癌症发展的主要损害例如,主要的诱变特性。
由致癌的氧化苯乙烯产生的 N7-烷基G 加合物尚不清楚。
部分原因是制备含有位点特异性 N7-烷基G-和烷基-FapyG 的技术困难
DNA,这归因于 N7-烷基G 核苷的快速纯化和烷基-G 核苷的容易异构化
FapyG 在固相 DNA 合成过程中为了克服 N7-烷基G 核苷的稳定性问题,我们有
开发了一种 2’-氟技术,通过提高 N7- 的稳定性来防止自发纯化
为了解决烷基-FapyG的异构化问题,我们采取了后合成的方法。
我们的初步研究是从含有 N7-烷基 G 的 DNA 中产生含有烷基 FapyG 的 DNA 的方法。
表明鸟嘌呤 N7 烷基化可以通过促进稀有碱基的形成来影响碱基配对特性
烯醇互变异构体、顺式碱基构象和/或嵌入我们的中心假设是N7-烷基G和烷基-。
FapyG 加合物通过改变碱基配对特性来促进突变和癌症发展
我们的长期研究目标是阐明化学不稳定的生物影响。
使用创新方法(例如 2'-F 化学、
polβ宿主-客体-复合体系统和合成后DNA修饰的目的是解剖生物。
N7-烷基G和烷基-FapyG通过强效烷基化诱变剂和抗癌剂诱导病变的后果
为了实现这一目标,我们将表征氧化苯乙烯和氮芥等试剂。
N7-烷基G和烷基-FapyG的配对特性以及识别、诱变和修复机制
使用合成、生物化学、结构生物学和细胞方法的组合工具来合成加合物。
拟议计划的成功执行将大大提高我们对影响的认识
致癌物/药物诱导的 N7-烷基G 和烷基-FapyG 碱基对构象损伤、互变异构、
诱变、识别和修复,为烷基化损伤诱导提供重要见解
突变和癌症的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seongmin Lee其他文献
Seongmin Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seongmin Lee', 18)}}的其他基金
Studies of Chemically Labile Alkylation Damage in DNA
DNA 中化学不稳定烷基化损伤的研究
- 批准号:
10735154 - 财政年份:2023
- 资助金额:
$ 22.69万 - 项目类别:
Synthesis, structure and biological effects of carcinogen/drug-induced bulky, intercalatable N7-alkylguanine lesions
致癌物/药物引起的大块插入式N7-烷基鸟嘌呤损伤的合成、结构和生物学效应
- 批准号:
9754147 - 财政年份:2017
- 资助金额:
$ 22.69万 - 项目类别:
相似国自然基金
酶法降解花生粕中黄曲霉毒素B1的机理及对花生粕品质的影响
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于可视化检测方法研究Bolt区对Trametes coccinea AFB1降解酶催化性能的影响机制
- 批准号:31802103
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
黄曲霉中SUMO化修饰对黄曲霉毒素B1生物合成过程的影响及其机制
- 批准号:31700050
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
黄曲霉毒素B1对肿瘤细胞IGF1受体/IRS2信号通路及细胞迁移的影响
- 批准号:81272215
- 批准年份:2012
- 资助金额:65.0 万元
- 项目类别:面上项目
电解离子水降解黄曲霉毒素B1影响因子及反应机制研究
- 批准号:31071553
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Studies of Chemically Labile Alkylation Damage in DNA
DNA 中化学不稳定烷基化损伤的研究
- 批准号:
10735154 - 财政年份:2023
- 资助金额:
$ 22.69万 - 项目类别:
Aflatoxin Exposure, Growth Faltering, and the Gut Microbiome among Children in Rural Guatemala
危地马拉农村儿童的黄曲霉毒素暴露、生长迟缓和肠道微生物组
- 批准号:
10586566 - 财政年份:2023
- 资助金额:
$ 22.69万 - 项目类别:
Project 4: Interrogating and harnessing age-related IFN signaling and innate immunity in HCC prevention and therapy
项目 4:在 HCC 预防和治疗中探究和利用与年龄相关的 IFN 信号传导和先天免疫
- 批准号:
10698110 - 财政年份:2021
- 资助金额:
$ 22.69万 - 项目类别:
Project 4: Interrogating and harnessing age-related IFN signaling and innate immunity in HCC prevention and therapy
项目 4:在 HCC 预防和治疗中探究和利用与年龄相关的 IFN 信号传导和先天免疫
- 批准号:
10270689 - 财政年份:2021
- 资助金额:
$ 22.69万 - 项目类别:
Role of Aflatoxin-induced DNA Damage Formation and Repair in Hepatic Mutagenesis
黄曲霉毒素诱导的 DNA 损伤形成和修复在肝突变中的作用
- 批准号:
10011805 - 财政年份:2020
- 资助金额:
$ 22.69万 - 项目类别: