Data Integration and Advanced Statistical Modeling to Describe and Control Pediatric Pedestrian Injuries in The United States
用于描述和控制美国儿童行人伤害的数据集成和高级统计模型
基本信息
- 批准号:9235300
- 负责人:
- 金额:$ 35.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAreaBig DataBig Data to KnowledgeCensusesCharacteristicsChildChild health careChildhoodChildhood InjuryCodeCommunitiesComplex AnalysisComputer AssistedCountyDataData AnalyticsData SetDatabase Management SystemsDatabasesEconomic FactorsEffectiveness of InterventionsEpidemiologic MethodsEpidemiologistEpidemiologyExposure toGoalsHealthHealth PromotionHospitalizationHospitalsImageryIncidenceInjuryInterventionLightingLinkMapsMethodsModelingNational Institute of Child Health and Human DevelopmentNeighborhoodsOutcomePolicy MakerPreventionPreventive InterventionProbabilityPublic HealthRecordsRehabilitation therapyReproducibilityResearchResearch PersonnelResearch SupportResistanceRiskRisk FactorsRouteSafetySchoolsSeriesSeveritiesSite VisitSoftware ToolsStatistical ModelsSystemTestingTranslatingUnited StatesUnited States National Institutes of HealthVehicle crashVirtual ToolVisualWidthWritingbasebuilt environmentcomputer sciencedata integrationdensitydesigndisorder preventionhealth datahigh riskinjuredinjury preventioninterestintervention programkillingsopen sourcepedestrian injurypediatric traumapopulation healthprogramspublic health relevancepublic health researchsocialsocioeconomicsspatiotemporaltime usetooluser-friendly
项目摘要
DESCRIPTION (provided by applicant): Pediatric pedestrian injury kills 1,000 children every year in the United States, and results in 51,000 annual injuries and 5,300 hospitalizations. Our goal in this project is to apply, translate and disseminate large-data analytic methods for epidemiology and population health research by quantifying and characterizing the small- area spatiotemporal risk of pediatric pedestrian injury in the United States. Our specific aims to achieve this goal are: (1) Create a comprehensive national database of pediatric pedestrian injuries to describe and analyze pediatric pedestrian injury in the United States using time-series
and regression methods. (2) Quantify pediatric pedestrian injury risk at the county and census-tract level to identify high-risk areas, and evaluate the preventative effect of the National Safe Routes to School intervention program. And, (3) use online street imagery to identify road, sidewalk and intersection characteristics associated with intersections where pedestrians are commonly injured despite Safe Routes to Schools Interventions having been implemented in the neighborhood. These aims are designed to test the hypotheses that 1) Large informative pediatric injury health data sets can be efficiently created, manipulated and queried using desktop systems, (2) Integrated nested Laplace approximations are a practical, reliable and accessible approach to identifying high-risk areas for pediatric injury in large spatiotemporal datasets, and (3) Street imagery audits are a feasible alternative to site visits to identify risk factors in high-risk areas. At the end of the project period, we will post online materials for heath researchers to replicate the methods for health-related data sets, and create a simple user-friendly interface and data query system for the results of our analyses that can be used by researchers, policy makers and other interested parties to inform local injury prevention and control efforts. By applying, demonstrating and translating advances in computer science for large national child health data the application is responsive to the NIH Big Data to Knowledge (BD2K) research priories to "address the challenges facing all biomedical researchers in releasing, accessing, managing, analyzing, and integrating datasets of diverse data types" and the NICHD priority to support "research on pediatric trauma, including prevention, treatment, and rehabilitation", and will evaluate, demonstrate and disseminate cutting edge computer science and statistical tools to address a pressing child health issue using approaches that can be applied to other epidemiological and public health research.
描述(由适用提供):在美国,小儿行人损伤每年造成1,000名儿童造成1,000名儿童,并导致51,000例年度伤害和5,300例住院治疗。我们在该项目中的目标是通过量化和表征美国小区域时空风险,应用,翻译和传播大型数据分析方法,以进行流行病学和人口健康研究。我们实现此目标的具体目的是:(1)创建一个全面的国家行人伤害数据库,以使用时间表来描述和分析美国的小儿行人伤害
和回归方法。 (2)量化该县和人口普查水平的小儿行人伤害风险以识别高风险地区,并评估国家安全学校干预计划的预防效果。 (3)使用在线街道图像识别与交叉路口相关的道路,人行道和交叉路口特征,在该路口是行人通常受伤的目的地安全途径到附近实施的学校干预措施。这些目的旨在测试1)可以有效地创建,使用桌面系统来有效地创建,操纵和查询大量的小儿损伤健康数据集,(2)(2)集成的嵌套拉普拉斯近似值是实用,可靠和可访问的方法,是一种识别高风险的空间访问的高风险访问范围的范围范围的范围访问的方法(3)街道范围的范围。高风险地区的风险因素。在项目期结束时,我们将在线材料供热研究人员复制与健康相关的数据集的方法,并创建一个简单的用户友好界面和数据查询系统,以供研究人员,政策制定者和其他有趣的党派使用该分析结果,以告知当地伤害预防和控制工作。 By applying, demonstrating and translating advances in computer science for large national child health data the application is responsive to the NIH Big Data to Knowledge (BD2K) research priorities to "address the challenges facing all biomedical researchers in releasing, accessing, managing, analyzing, and integrating datasets of divers data types" and the NICHD priority to support "research on pediatric trauma, including prevention, treatment, and rehabilitation", and will评估,演示和传播尖端的计算机科学和统计工具,以使用可以应用于其他流行病学和公共卫生研究的方法来解决紧迫的儿童健康问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles DiMaggio其他文献
Charles DiMaggio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles DiMaggio', 18)}}的其他基金
Data Integration and Advanced Statistical Modeling to Describe and Control Pediatric Pedestrian Injuries in The United States
用于描述和控制美国儿童行人伤害的数据集成和高级统计模型
- 批准号:
9079217 - 财政年份:2016
- 资助金额:
$ 35.83万 - 项目类别:
Child Pedestrian Injuries and Built Urban Environment: Evaluation of a Safe Route
儿童行人伤害与城市建成环境:安全路线评估
- 批准号:
8010001 - 财政年份:2010
- 资助金额:
$ 35.83万 - 项目类别:
Child Pedestrian Injuries and Built Urban Environment: Evaluation of a Safe Route
儿童行人伤害与城市建成环境:安全路线评估
- 批准号:
8137983 - 财政年份:2010
- 资助金额:
$ 35.83万 - 项目类别:
Changes in Substance Abuse Patterns Following the Terrorist Attacks of September
九月恐怖袭击后药物滥用模式的变化
- 批准号:
7287131 - 财政年份:2008
- 资助金额:
$ 35.83万 - 项目类别:
Behavioral Health Effects of September 11th, 2001
2001 年 9 月 11 日对行为健康的影响
- 批准号:
6952029 - 财政年份:2004
- 资助金额:
$ 35.83万 - 项目类别:
Behavioral Health Effects of September 11th, 2001
2001 年 9 月 11 日对行为健康的影响
- 批准号:
6914771 - 财政年份:2004
- 资助金额:
$ 35.83万 - 项目类别:
Behavioral Health Effects of September 11th, 2001
2001 年 9 月 11 日对行为健康的影响
- 批准号:
7120027 - 财政年份:2004
- 资助金额:
$ 35.83万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 35.83万 - 项目类别:
The Social-Medical Network: Using a Network Approach to Explore the Integration of Informal and Formal Care Networks of Older Adults
社会医疗网络:利用网络方法探索老年人非正式和正式护理网络的整合
- 批准号:
10724756 - 财政年份:2023
- 资助金额:
$ 35.83万 - 项目类别:
Derivation and Validation of the Pediatric Community-Acquired Pneumonia Severity (PedCAPS) Score
儿科社区获得性肺炎严重程度 (PedCAPS) 评分的推导和验证
- 批准号:
10587951 - 财政年份:2023
- 资助金额:
$ 35.83万 - 项目类别:
Development of a Video-based Personal Protective Equipment Monitoring System
基于视频的个人防护装备监控系统的开发
- 批准号:
10585548 - 财政年份:2023
- 资助金额:
$ 35.83万 - 项目类别:
Investigating Disparities in End-of-Life Care in Undocumented Hispanic Immigrants
调查无证西班牙裔移民临终关怀方面的差异
- 批准号:
10593462 - 财政年份:2023
- 资助金额:
$ 35.83万 - 项目类别: