Transdisciplinary Big Data Science Training at UVa
弗吉尼亚大学跨学科大数据科学培训
基本信息
- 批准号:9248433
- 负责人:
- 金额:$ 28.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): We aim to prepare the next generation of scientists and engineers to address the monumental challenge of multi-type biomedical big data manipulation, analysis, and interpretation. We propose a curriculum and a set of programmatic activities to create an interdisciplinary training ground wherein teams of students will work across key disciplines, benefit from a true co-mentoring and interdisciplinary environment, and develop the technical and "soft" skills necessary to succeed as independent scientists making groundbreaking new discoveries enabled by biomedical big data. Three key features of this proposed training program are (1) depth in Big Data technical training, (2) tangible "soft skill" training through collaborative, team science activities, and (3) cross-disciplinary co-mentors in close physical proximity. Our proposed program embraces the philosophy that "there can be no question about the productivity and effectiveness of research teams formed of partners with diverse expertise." (The National Academies, 2004). We propose courses, symposia, workshops, and collaborative activities to create a training environment that will support the development of the next generation of biomedical big data scientists and engineers. The proposed program will necessarily lie outside the existing traditional curricular structure, and it
will provide the blueprint for the future in which collaborative biomedical big data science will play an ever-increasing role in biomedical science research. The program is led by faculty with a strong history of prior collaboration and activity in biomedical big data science. A total of 8 trainees will be supported at any given time, with 4 new trainees per year each with two years of support (with a total of 20 trainees over the lifetime of the grant). The goals of our proposed training program are to (1) Create innovative and effective approaches to teaching collaborative methods for interdisciplinary biomedical big data science; (2) Address the demand at UVa and nationally for students and ultimately scientific professionals with data science expertise who can work on interdisciplinary teams to address complex challenges and problems; (3) Produce a scalable, sustainable and transferable program for education and training in collaborative big data science; (4) Create new pipelines for Ph.D. students from underrepresented groups. Recognizing the inextricable link between diversity and excellence, our program seeks to ensure that the next generation of leaders in biomedical big data science and engineering emerges from a variety of backgrounds. With an excellent infrastructure and history of recruiting students from underrepresented groups to existing NIH and other federal agency-funded programs at UVa, this proposed training program will flourish in bringing diversity to biomedical big data science. Historically, diverse sets of expertise were deeply embedded in the solution to many important scientific problems. We seek to imbue this sense of dedication to collaboration in our training program on biomedical big data.
描述(由应用程序提供):我们旨在准备下一代科学家和工程师,以应对多类生物医学大数据操纵,分析和解释的巨大挑战。我们提出了一项课程和一系列程序化活动,以创建一个跨学科的培训领域,其中的学生团队将跨关键学科工作,受益于真正的辅助和跨学科环境,并开发出成功的技术和“软”技能,以成功地作为独立科学家作为独立科学家创造的独立科学家,从而通过生物学大数据启用了突破性的新发现。该拟议培训计划的三个关键特征是(1)大数据技术培训的深度,(2)通过协作,团队科学活动和(3)跨学科的合作者有形的“软技能”培训,并密切实现了跨学科的培训。我们提出的计划涵盖了这样一种理念:“对具有潜水员专业知识的合作伙伴组成的研究团队的生产力和有效性毫无疑问。” (国家学院,2004年)。我们建议课程,研讨会,研讨会和协作活动,以创建培训环境,以支持下一代生物医学大数据科学家和工程师的发展。拟议的计划必然会在现有的传统课程结构之外,并且
我们提出的培训计划的目标是由教师领导的,具有悠久的生物医学大数据科学领域的合作和活动的历史。在任何给定时间,总共将支持8名学员,每年有4名新学员,并获得了两年的支持(在赠款的一生中共有20名学员)。 (1)为跨学科生物医学大数据科学教学的协作方法创建创新有效的方法; (2)满足UVA的需求以及全国对具有数据科学专业知识的学生以及最终的科学专业人员的需求,他们可以研究跨学科团队以应对复杂的挑战和问题; (3)在合作大数据科学中制定可扩展,可持续和可转让的计划,以进行教育和培训; (4)为博士创建新管道。来自代表性不足的团体的学生。认识到多样性与卓越性之间的不可息联系,我们的计划旨在确保生物医学大数据科学和工程领域的下一代领导者来自各种背景。凭借出色的基础设施和招募学生从代表性不足的群体到UVA现有的NIH和其他由联邦机构资助的计划的学生的历史,该拟议的培训计划将荧光,为生物医学大数据科学带来多样性。从历史上看,潜水员的专业知识集被深深地嵌入了解决许多重要科学问题的解决方案中。我们试图在我们的生物医学大数据培训计划中充满这种致力于协作的感觉。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald E Brown其他文献
Donald E Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald E Brown', 18)}}的其他基金
The integrated Translational Health Research Institute of Virginia (iTHRIV): Using Data to Improve Health
弗吉尼亚综合转化健康研究所 (iTHRIV):利用数据改善健康
- 批准号:
10367106 - 财政年份:2021
- 资助金额:
$ 28.91万 - 项目类别:
The integrated Translational Health Research Institute of Virginia (iTHRIV): Using Data to Improve Health
弗吉尼亚综合转化健康研究所 (iTHRIV):利用数据改善健康
- 批准号:
10335371 - 财政年份:2020
- 资助金额:
$ 28.91万 - 项目类别:
The integrated Translational Health Research Institute of Virginia (iTHRIV): Using Data to Improve Health
弗吉尼亚综合转化健康研究所 (iTHRIV):利用数据改善健康
- 批准号:
10158925 - 财政年份:2020
- 资助金额:
$ 28.91万 - 项目类别:
Provision of Clinical Data to Support a Nationwide COVID-19 Cohort Collaborative
提供临床数据以支持全国范围内的 COVID-19 队列协作
- 批准号:
10159046 - 财政年份:2020
- 资助金额:
$ 28.91万 - 项目类别:
Convalescent Immune Plasma for the Treatment of COVID-19: Mechanisms Underlying the Host Immunologic and Virologic Response
用于治疗 COVID-19 的恢复期免疫血浆:宿主免疫学和病毒学反应的机制
- 批准号:
10213475 - 财政年份:2020
- 资助金额:
$ 28.91万 - 项目类别:
The integrated Translational Health Research Institute of Virginia (iTHRIV): Using Data to Improve Health
弗吉尼亚综合转化健康研究所 (iTHRIV):利用数据改善健康
- 批准号:
10558478 - 财政年份:2019
- 资助金额:
$ 28.91万 - 项目类别:
The integrated Translational Health Research Institute of Virginia (iTHRIV): Using Data to Improve Health
弗吉尼亚综合转化健康研究所 (iTHRIV):利用数据改善健康
- 批准号:
10094090 - 财政年份:2019
- 资助金额:
$ 28.91万 - 项目类别:
The integrated Translational Health Research Institute of Virginia (iTHRIV): Using Data to Improve Health
弗吉尼亚综合转化健康研究所 (iTHRIV):利用数据改善健康
- 批准号:
10347172 - 财政年份:2019
- 资助金额:
$ 28.91万 - 项目类别:
Pilot Study to Determine Health Effects of e-cigarette in Healthy Young Adults
确定电子烟对健康年轻人健康影响的试点研究
- 批准号:
10198248 - 财政年份:2019
- 资助金额:
$ 28.91万 - 项目类别:
Pilot Study to Determine Health Effects of e-cigarette in Healthy Young Adults
确定电子烟对健康年轻人健康影响的试点研究
- 批准号:
10338542 - 财政年份:2019
- 资助金额:
$ 28.91万 - 项目类别:
相似国自然基金
网络即数据——基于生成式神经网络的高光谱图像压缩
- 批准号:42301437
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于海量数据的地震智能检测方法及其在密集地震序列中的应用研究
- 批准号:42374081
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
利用FAST漂移扫描多科学目标同时巡天宽带谱线数据研究星系中性氢质量函数
- 批准号:12373012
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
地学数据中尺度转换关键科学问题研究及地学应用
- 批准号:
- 批准年份:2022
- 资助金额:273 万元
- 项目类别:重点项目
基于开源社区群体智能的数据科学程序性能优化技术研究
- 批准号:62202213
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 28.91万 - 项目类别:
Understanding Risk Heterogeneity Following Child Maltreatment: An Integrative Data Analysis Approach.
了解虐待儿童后的风险异质性:综合数据分析方法。
- 批准号:
10721233 - 财政年份:2023
- 资助金额:
$ 28.91万 - 项目类别:
PTSD and Autoimmune Disease: Towards Causal Effects, Risk Factors, and Mitigators
创伤后应激障碍 (PTSD) 和自身免疫性疾病:因果效应、危险因素和缓解措施
- 批准号:
10696671 - 财政年份:2023
- 资助金额:
$ 28.91万 - 项目类别:
Proteomic Signatures Associated with Right Ventricular Failure and Mortality in Pulmonary Arterial Hypertension
与肺动脉高压右心室衰竭和死亡率相关的蛋白质组学特征
- 批准号:
10675409 - 财政年份:2023
- 资助金额:
$ 28.91万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 28.91万 - 项目类别: