Understanding Risk Heterogeneity Following Child Maltreatment: An Integrative Data Analysis Approach.
了解虐待儿童后的风险异质性:综合数据分析方法。
基本信息
- 批准号:10721233
- 负责人:
- 金额:$ 11.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeBig DataChildChild Abuse and NeglectChild DevelopmentChild WelfareChronicCohort StudiesCollaborationsDataData AnalysesData PoolingData SetDevelopmentDevelopmental CourseDevelopmental ProcessDimensionsEconomic BurdenElementsEthnic OriginExposure toFundingGoalsHeterogeneityIncidenceIndividualInterventionInvestmentsKnowledgeLearningLifeLongitudinal StudiesLongitudinal cohort studyMentorshipMethodologyMethodsMissionModelingNational Institute of Child Health and Human DevelopmentOutcomePathologyPathway interactionsPhenotypePopulationProcessPublic HealthQuality of lifeRaceReproducibilityReproducibility of ResultsResearchResearch PersonnelResearch TrainingResourcesRiskRisk FactorsSamplingScienceSeveritiesSourceStretchingSubgroupSurvivorsSystemTechniquesTestingTimeTrainingTraining ProgramsUnited States National Institutes of HealthVariantWorkYouthbiological systemsbiopsychosocialcareer developmentcohortcostdata archivedata harmonizationdata sharingdata sharing networksdesignethnic diversityethnic minorityethnic minority populationexperiencehealth disparityhigh riskimprovedinnovationlongitudinal designmeetingsminority childrenmultiple datasetsprospectivepsychologicracial minorityresilienceskill acquisitionskills
项目摘要
PROJECT SUMMARY
Child maltreatment (CM) is a broad-ranging risk factor associated with compromised development and
maladaptation. Yet, there is vast heterogeneity in the experience of CM and its developmental outcomes. Several
of the field’s most pressing developmental questions involve exploring such heterogeneity. However,
investigating risk heterogeneity in CM populations requires sensitive longitudinal studies of high-risk, hard-to-
reach subjects with adequate power to detect unique subgroups who differ in the experience and consequences
of CM—such studies are costly, arduous, and rare. This project aims to address this gap.
The overall objective of this project is to apply Integrative Data Analysis (IDA)—a principled set of methodologies
and statistical techniques used to conduct simultaneous analysis of raw data pooled from multiple datasets—as
a method to address questions about risk heterogeneity that may not be addressed through individual CM studies
alone. This project will use IDA to pool data from 7 NIH-funded CM cohorts that used gold-standard methods to
examine the development of long-term CM sequelae across biopsychosocial domains. Pooling original data from
multiple CM studies stretches the developmental period under observation, generates a more heterogenous
sample, and increases statistical power to examine important sources of risk heterogeneity. IDA will yield an
integrated sample (N = 2,898) that includes assessment of an array of biopsychosocial processes from ages 4
through 40. The IDA dataset will be used to address three aims: A1) determine how heterogeneity in CM
exposure (i.e., variation in types, developmental timing, and chronicity of exposure) differentially influences
developmental sequelae; A2) identify heterogeneity in the developmental outcome trajectories of CM survivors
and examine which features of CM exposure are associated with specific trajectories; A3) explore how CM
exposure and subsequent developmental processes differ based on racial/ethnic heterogeneity.
This project is innovative because it will leverage $25 million of NIH investment in CM research to unlock the
constraints of isolated studies, creating a pooled source of CM data that is more powerful and diverse than any
individual cohort, maximizing the value of complementary efforts in the field. This contribution will be significant
because it will help to parse risk heterogeneity in CM survivors, which is necessary to improve the precision of
our interventions. Further, this project will create an integrative CM dataset that will be a shared data resource
for the field, resulting in exponential contributions that extend beyond this K01. Finally, this proposal will greatly
enhance the PI’s career development and enable him to advance toward his long-term goal of becoming an
independent investigator who can advance the fields of child development and CM via innovative methods.
Training-mentorship will be provided to learn IDA methodologies; gain expertise to study risk heterogeneity;
acquire skills in longitudinal data analysis; and gain team science skills.
项目摘要
儿童虐待(CM)是与受损的发展和
适应不良。然而,CM的经验及其发展成果存在巨大的异质性。一些
该领域最紧迫的发展问题涉及探索这种异质性。然而,
调查CM种群中的风险异质性需要对高风险,难以实现的敏感纵向研究
达到具有足够力量的受试者,可以检测出在经验和后果不同的独特子组
CM的研究是昂贵,艰巨而罕见的。该项目旨在解决这一差距。
该项目的总体目的是应用综合数据分析(IDA) - 一组主要方法
以及用于对来自多个数据集汇总的原始数据进行简单分析的统计技术 -
一种解决有关风险异质性问题的方法,该问题可能无法通过单个CM研究来解决
独自的。该项目将使用IDA从7个使用金标准方法的7个NIH资助的CM队列中汇总数据
检查跨生物心理社会领域的长期商业后遗症的发展。汇总原始数据
多个CM研究延伸了观察到的发育期,产生了更异质的
样本,并增加统计能力以检查重要的风险异质性来源。艾达将产生
综合样本(n = 2,898),包括评估4岁的生物心理社会过程
通过40。IDA数据集将用于解决三个目标:A1)确定CM中的异质性如何
暴露(即类型的变化,发育时机和暴露的慢性变化)对影响有所不同
发育后遗症; A2)确定CM表面发展结果轨迹的异质性
并检查CM暴露的哪些特征与特定轨迹相关; A3)探索CM
基于种族/种族异质性,暴露和随后的发展过程不同。
该项目具有创新性,因为它将利用2500万美元的NIH投资在CM研究中解锁
孤立研究的限制,创建了比任何人都更强大和潜水员的汇总CM数据源
个别队列,最大程度地提高该领域的互补工作价值。这项贡献将是重要的
因为它将有助于解析CM存活中的风险异质性,这是提高精度的必要条件
我们的干预措施。此外,该项目将创建一个集成的CM数据集,该数据集将是共享数据资源
对于该领域,导致指数贡献超出了K01。最后,这个建议将大大
增强PI的职业发展,并使他能够朝着自己的长期目标迈向成为一个
可以通过创新方法推进儿童发展领域和CM领域的独立研究人员。
将提供培训训练,以学习IDA方法;获得专业知识来研究风险异质性;
在纵向数据分析中获取技能;并获得团队科学技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Russotti其他文献
Justin Russotti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Origins and Benefits of Biologically Active Components in Human Milk
母乳中生物活性成分的来源和益处
- 批准号:
10683486 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Examining patterns of opioid overdose hotspots and opioid treatment deserts in California
检查加利福尼亚州阿片类药物过量热点和阿片类药物治疗沙漠的模式
- 批准号:
10679608 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
- 批准号:
10619319 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Leveraging complementary big data methods and patient intervention designs to optimize neural markers of adolescent cannabis use
利用互补的大数据方法和患者干预设计来优化青少年大麻使用的神经标记
- 批准号:
10739527 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别:
Addressing Structural Disparities in Autism Spectrum Disorder through Analysis of Secondary Data (ASD3)
通过二手数据分析解决自闭症谱系障碍的结构性差异 (ASD3)
- 批准号:
10732506 - 财政年份:2023
- 资助金额:
$ 11.7万 - 项目类别: