Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics

颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制

基本信息

  • 批准号:
    10653587
  • 负责人:
  • 金额:
    $ 47.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary With numerous Gram-negative bacterial species demonstrating antimicrobial drug resistance, the identification of new inhibitors and the optimization of existing inhibitors is necessary to enable an effective treatment of illnesses. Recent research efforts in our lab and others have demonstrated that aminoglycosides have minimal impact on protein synthesis and in fact they potently bind to heptosytransferase I (HepI) in Escherichia coli. This is an important finding, because it may allow for this class of antibiotics to be dramatically redesigned to be better drugs with fewer side effects, because the HepI and ribosome binding sites have very different sizes and they have dramatic differences in charges (HepI is positively charged, while the ribosome is negatively charged). This proposal will advance efforts to redesign aminoglycoside antibiotics to enhance HepI binding and to reduce binding to other cellular targets that can lead to side effects like oto- and nephrotoxicity. Our investigation will address three hypotheses: (1) that aminoglycosides bind to other cellular targets beyond the ribosome including heptosyltransferase enzymes, (2) understanding the HepI-aminoglycoside interactions will enable structural modification and optimization of bactericidal activity, and (3) that computational methods can enhance aminoglycoside redesign. To date, efforts to redesign aminoglycosides for more potent binding to the ribosome has failed to lead to more potent drugs, and this is likely because the mechanism of action involves other enzymes like HepI. This work promises to enhance drug discovery efforts while also providing training for students in my lab and in two upper-level biochemistry courses at Wesleyan in 21st century drug discovery methods.
项目摘要 具有许多革兰氏阴性细菌物种表现出抗菌耐药性,该鉴定 必须有效治疗新的抑制剂和现有抑制剂的优化 疾病。我们实验室和其他人的最新研究工作表明,氨基糖苷的最低 对蛋白质合成的影响,实际上它们在大肠杆菌中有效与七体转移酶I(HEPI)结合。这 这是一个重要的发现,因为它可以使这类抗生素重新设计为更好 副作用较少的药物,因为HEPI和核糖体结合位点的尺寸非常不同,并且它们 指控有巨大的差异(HEPI的充电,核糖体负担负电荷)。这 提案将促进重新设计氨基糖苷抗生素以增强HEPI结合并减少的努力。 与其他细胞靶标结合,可能导致副作用,例如耳毒性和肾毒性。 我们的调查将解决三个假设:(1)氨基糖苷与其他细胞靶标结合 包括七糖基转移酶的核糖体,(2)理解肝氨基糖苷的相互作用 将实现杀菌活性的结构修饰和优化,以及(3)计算方法 可以增强氨基糖苷的重新设计。迄今为止,重新设计氨基糖苷的努力以使其更有效的约束 核糖体未能导致更有效的药物,这可能是因为作用机理涉及 其他酶,例如HEPI。这项工作有望加强药物发现工作,同时还为 我的实验室的学生和21世纪卫斯理的两个高级生物化学课程 方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erika A Taylor其他文献

Erika A Taylor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erika A Taylor', 18)}}的其他基金

Inhibition of HeptosyltransferaseI for the treatment of Gram-negative bacterial infection
抑制庚基转移酶 I 治疗革兰氏阴性菌感染
  • 批准号:
    8958425
  • 财政年份:
    2015
  • 资助金额:
    $ 47.47万
  • 项目类别:

相似国自然基金

基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
  • 批准号:
    82304698
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
  • 批准号:
    62302456
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
  • 批准号:
    32301185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
  • 批准号:
    32370941
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Designing the next generation of highly selective sorbent materials for remediation of target inorganic contaminants in aqueous systems
设计下一代高选择性吸附剂材料,用于修复水系统中的目标无机污染物
  • 批准号:
    10332732
  • 财政年份:
    2020
  • 资助金额:
    $ 47.47万
  • 项目类别:
Strategies for Expedited Synthesis of Sulfated Aminoglycans
硫酸化氨基聚糖的快速合成策略
  • 批准号:
    10371884
  • 财政年份:
    2020
  • 资助金额:
    $ 47.47万
  • 项目类别:
Designing the next generation of highly selective sorbent materials for remediation of target inorganic contaminants in aqueous systems
设计下一代高选择性吸附剂材料,用于修复水系统中的目标无机污染物
  • 批准号:
    10112929
  • 财政年份:
    2020
  • 资助金额:
    $ 47.47万
  • 项目类别:
Strategies for Expedited Synthesis of Sulfated Aminoglycans
硫酸化氨基聚糖的快速合成策略
  • 批准号:
    10594458
  • 财政年份:
    2020
  • 资助金额:
    $ 47.47万
  • 项目类别:
Designing the next generation of highly selective sorbent materials for remediation of target inorganic contaminants in aqueous systems
设计下一代高选择性吸附剂材料,用于修复水系统中的目标无机污染物
  • 批准号:
    10559492
  • 财政年份:
    2020
  • 资助金额:
    $ 47.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了