Omics data integration and analysis for structure-based multi-target drug design
基于结构的多靶点药物设计的组学数据集成和分析
基本信息
- 批准号:9285997
- 负责人:
- 金额:$ 35.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdverse effectsAlgorithmic SoftwareAlgorithmsAnimal ModelBig DataBindingBioinformaticsBiologicalBiomedical ResearchBiophysicsChemicalsClinicalClinical TreatmentClinical TrialsCollaborationsCommunitiesComplexComputer SimulationComputer softwareComputing MethodologiesDataData AnalysesData AnalyticsData SetDatabasesDimensionsDisciplineDockingDrug CostsDrug DesignDrug IndustryDrug InteractionsDrug TargetingDrug effect disorderEffectivenessExtracellular ProteinFaceFailureFosteringGenesGeneticGenomicsGenotypeGoalsHuman GenomeIn VitroKnowledgeLaboratoriesLigandsLinkMachine LearningMalignant NeoplasmsMediatingMethodologyMethodsModelingModernizationMolecular ConformationNoiseOrganismOutcomePerformancePharmaceutical PreparationsPharmacologic SubstancePharmacologyPhase III Clinical TrialsPhenotypePhosphotransferasesPhysiologicalProcessProtein DynamicsProteinsProteomeProteomicsReproducibilityResearchResearch PersonnelResistanceStructureSystemSystems BiologyTechniquesTestingToxic effectUnited States National Institutes of HealthUpdateVisionWorkanti-cancer therapeuticbasebiological systemscancer therapycellular targetingcomputer infrastructurecomputerized toolscostdata integrationdesigndrug candidatedrug developmentdrug discoverydrug efficacyexperiencefunctional genomicsgenome sequencinggenome wide association studygenomic datahigh throughput screeninghuman subjectimprovedin vivoindustry partnerinsightkinase inhibitormolecular dynamicsmortalitynetwork modelsnovelnovel therapeuticsonline resourceopen sourcepathogen genomephenomephenomicsphenotypic dataprecision medicinereceptorsmall moleculestructural genomicstargeted treatmenttooltranscriptomicsusabilityuser-friendlyweb serviceswhole genome
项目摘要
Abstract
Genome-Wide Association Studies (GWAS), whole genome sequencing, and high-throughput techniques have
generated vast amounts of diverse omics and phenotypic data. However, these sets of data have not yet been
fully explored to improve the effectiveness and efficiency of drug discovery, which continues along the one-
drug-one-gene paradigm. Consequently, the cost of bringing a drug to market is staggering, and the failure rate
is daunting. Our long-term goal is to revive the lagging pharmaceutical pipeline by identifying robust methods
for achieving precision medicine. We will achieve this goal by developing a novel structural systems
pharmacology approach to drug discovery, which integrates structure-based drug design with heterogeneous
omics data integration and analysis in the context of the whole human and pathogen genome and interactome.
An increasing body of evidence from both our group and others suggests that most drugs commonly interact
with multiple receptors (targets). Both strong and weak multiple drug-target interactions can collectively
mediate drug efficacy, toxicity, and resistance through the conformational dynamics of biomolecules. In order
to rationally design potent, safe, and precision medicine, we face one of the major unsolved challenges in
structure-based drug design: what are all the possible proteins and their conformational states interacting with
a drug in an organism? This proposal attempts to address this challenge by developing, disseminating, and
experimentally testing novel computational tools. Based on our successful preliminary results, we will develop
an integrated computational pipeline to identify three-dimensional (3D) protein-chemical interaction models in
the cellular context and on a structural proteome scale. Specifically, we will develop a quaternary structure-
centric multi-layered network model by integrating heterogeneous data from genomics, proteomics, and
phenomics. We will develop a novel collaborative one-class collaborative filtering algorithm to infer missing
relations in the multi-layered network. We will combine tools derived from structural bioinformatics, biophysics,
and machine learning to gain biological insights into the drug action. To facilitate the usability and
reproducibility of the proposed algorithms, we will develop community-based web resources established by our
previous experiences in developing the Protein Data Bank (PDB). More importantly, we will work closely with
experimental laboratories to test the proposed computational tools using targeted kinase polypharmacology as
a real-world example, and iteratively improve the performance and usability of algorithm, software, and web
services. The successful completion of this project will provide the scientific community with: (1) new methods
to enhance the scope and capability of high-throughput screening for structure-based multi-target drug design;
(2) a user-friendly web service to support community-based drug discovery; and (3) potential novel anti-cancer
targeted therapeutics. Together, these tools will advance drug discovery and precision medicine by providing a
structural systems pharmacology toolkit.
抽象的
全基因组关联研究 (GWAS)、全基因组测序和高通量技术已
产生了大量不同的组学和表型数据。不过,这组数据尚未得到证实
充分探索以提高药物发现的有效性和效率,并沿着这一方向继续进行
药物单基因范式。因此,将药物推向市场的成本是惊人的,而且失败率很高
是令人畏惧的。我们的长期目标是通过确定稳健的方法来重振落后的制药渠道
以实现精准医疗。我们将通过开发新颖的结构系统来实现这一目标
药物发现的药理学方法,它将基于结构的药物设计与异质性相结合
在整个人类和病原体基因组和相互作用组的背景下进行组学数据整合和分析。
我们的团队和其他人提供的越来越多的证据表明,大多数药物通常会相互作用
具有多个受体(目标)。强和弱的多药物靶点相互作用可以共同
通过生物分子的构象动力学介导药物功效、毒性和耐药性。为了
为了合理地设计有效、安全和精准的药物,我们面临着尚未解决的主要挑战之一
基于结构的药物设计:所有可能的蛋白质及其构象状态有哪些相互作用
有机体中的药物?该提案试图通过制定、传播和
实验测试新颖的计算工具。基于我们成功的初步成果,我们将开发
一个集成的计算管道,用于识别三维(3D)蛋白质-化学相互作用模型
细胞背景和结构蛋白质组规模。具体来说,我们将开发一种四级结构-
通过集成来自基因组学、蛋白质组学和生物医学的异构数据来构建中心多层网络模型
表型组学。我们将开发一种新颖的协作一类协作过滤算法来推断缺失
多层网络中的关系。我们将结合来自结构生物信息学、生物物理学、
和机器学习以获得药物作用的生物学见解。为了促进可用性和
所提出的算法的可重复性,我们将开发由我们建立的基于社区的网络资源
以前开发蛋白质数据库(PDB)的经验。更重要的是,我们将与
实验实验室使用靶向激酶多药理学来测试所提出的计算工具
一个真实的例子,迭代地提高算法、软件和网络的性能和可用性
服务。该项目的成功完成将为科学界提供:(1)新方法
提高基于结构的多靶点药物设计的高通量筛选的范围和能力;
(2) 用户友好的网络服务,支持基于社区的药物发现; (3) 潜在的新型抗癌药物
靶向治疗。这些工具将共同推动药物发现和精准医学的发展
结构系统药理学工具包。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHEN K BURLEY其他文献
STEPHEN K BURLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHEN K BURLEY', 18)}}的其他基金
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
10473648 - 财政年份:2019
- 资助金额:
$ 35.42万 - 项目类别:
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
10004836 - 财政年份:2019
- 资助金额:
$ 35.42万 - 项目类别:
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
10686902 - 财政年份:2019
- 资助金额:
$ 35.42万 - 项目类别:
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
10476772 - 财政年份:2019
- 资助金额:
$ 35.42万 - 项目类别:
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
10224778 - 财政年份:2019
- 资助金额:
$ 35.42万 - 项目类别:
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
10702253 - 财政年份:2019
- 资助金额:
$ 35.42万 - 项目类别:
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
9768060 - 财政年份:2019
- 资助金额:
$ 35.42万 - 项目类别:
Drug discovery by integrating chemical genomics and structural systems biology
通过整合化学基因组学和结构系统生物学来发现药物
- 批准号:
9119046 - 财政年份:2014
- 资助金额:
$ 35.42万 - 项目类别:
Drug discovery by integrating chemical genomics and structural systems biology
通过整合化学基因组学和结构系统生物学来发现药物
- 批准号:
8919745 - 财政年份:2014
- 资助金额:
$ 35.42万 - 项目类别:
Drug discovery by integrating chemical genomics and structural systems biology
通过整合化学基因组学和结构系统生物学来发现药物
- 批准号:
8764935 - 财政年份:2014
- 资助金额:
$ 35.42万 - 项目类别:
相似国自然基金
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
- 批准号:32302787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
- 批准号:32303021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
- 批准号:
10819933 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Patterns and neurocognitive consequences of opioid-alcohol polysubstance use
阿片类酒精多物质使用的模式和神经认知后果
- 批准号:
10659347 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Intersectional Stigma Reduction for Tajik Migrants Who Inject Drugs
减少注射毒品的塔吉克移民的跨部门耻辱
- 批准号:
10755435 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别:
Pathway-guided treatment of immune checkpoint inhibitor therapy-induced colon toxicity
免疫检查点抑制剂治疗引起的结肠毒性的路径引导治疗
- 批准号:
10752985 - 财政年份:2023
- 资助金额:
$ 35.42万 - 项目类别: