Drug discovery by integrating chemical genomics and structural systems biology
通过整合化学基因组学和结构系统生物学来发现药物
基本信息
- 批准号:9119046
- 负责人:
- 金额:$ 29.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptionAlgorithmsAnti-Infective AgentsAntibiotic ResistanceAntibioticsAreaBig DataBinding SitesBiochemicalBioinformaticsBiological AssayBiophysicsCaenorhabditis elegansCardiovascular DiseasesCellsChemical StructureChemicalsClinicalCollaborationsCommunitiesComputational TechniqueComputer SimulationComputer softwareCoupledDataDiseaseDockingDrug DesignDrug IndustryDrug TargetingDrug resistanceFailureGenerationsGenesGenomeGenomicsGleanGoalsGraphHealthHealth Services ResearchHumanIn VitroInfectionInterdisciplinary StudyLaboratoriesLeadLigandsMalignant NeoplasmsMapsMarketingMethodologyMethodsMicrobeMiningModalityModelingMolecularMolecular ModelsMolecular TargetMulti-Drug ResistanceOutcomePerformancePharmaceutical PreparationsPharmacologic SubstanceProcessProtein AnalysisProteinsResolutionStructure-Activity RelationshipSystems BiologyTechniquesTestingTherapeuticTreatment FailureUnited States National Institutes of HealthValidationWorkbasebiological systemscombatcomputerized toolscostdesigndrug discoveryfunctional genomicsfunctional/structural genomicsgenome-widegenomic dataglobal healthimprovedin vivoin vivo Bioassayinnovationmolecular dynamicsmolecular modelingmulti-scale modelingnovelnovel strategiesnovel therapeuticspathogenpathogen genomepre-clinicalscreeningstatisticsstructural genomicssuccesstool
项目摘要
DESCRIPTION (provided by applicant):
The cost of bringing a drug to market is astounding and the failure rate is daunting. The limited success of conventional drug discovery is in a large part attributed to the wide adoption of a reductionist model of "one- drug-one-gene-one-disease". New methodologies are very much called for: Polypharmacology focuses on defining multiple targets to a single drug and studying the effect of these drugs on perturbing disease-causing networks. Drug repurposing reuses existing drugs for new clinical indications. These two modalities have emerged as new drug discovery paradigms, and are strongly prompted by the NIH. However, rational and effective polypharmacology and drug repurposing is currently hindered by our limited understanding of structural and energetic origins of genome-wide drug-target interactions. To address this challenge, this proposal seeks to develop and experimentally validate an innovative methodology to determine high-resolution drug-target interactions on a genome scale. Building on our successful proof-of-concept studies, and close multidisciplinary collaborations between experimental and computational laboratories, we will integrate big data from chemical, structural, and functional genomics, and synthesize techniques derived from large-scale graph mining, global set statistics, chemoinformatics, bioinformatics, molecular modeling, and biophysics. Specifically, we will develop a new chemical similarity search method, ligand Enrichment of Network Topological Similarity (ligENTS), to map the continuous chemical universe to its global pharmacological space. We will integrate ligENTS with our already successful structural systems biology platform to construct high- resolution drug-target interaction models across species and across fold space. To demonstrate the feasibility and innovation of our proposed integrative approach, we will apply it to a test case: anti-infective drug repurposing. The emergence of drug resistant microbes to antibiotics poses a great threat to human health. Repurposing safe drugs to target pathogen-associated proteins has emerged as a novel concept to combat drug resistant pathogens. However, significant technical barriers exist in applying existing drug repurposing strategies across species in the context of pathogen-host interactions. Our innovative approach consolidates chemical, structural and network views of molecular components and their interactions in a biological system, thereby providing a new solution to discovering safe and efficient anti-infective agents by determining molecular targets of bioactive compounds in both humans and pathogens. We will experimentally validate novel pathogen-associated proteins and anti-infective drugs, generated from our in silico predictions, both in vitro and in vivo. If successful, this work will provide the scientific community and pharmaceutical industry with: (a) fundamentally new algorithms and associated software for identifying three-dimensional drug-target interaction models on a genome scale, and (b) experimentally validated novel anti-infective compounds and targets, with the potential to combat antibiotic resistance.
描述(由申请人提供):
将药物推向市场的成本令人震惊,失败率也令人望而生畏。传统药物发现的有限成功在很大程度上归因于“一种药物、一种基因、一种疾病”的还原论模型的广泛采用。非常需要新的方法:多药理学专注于为单一药物定义多个靶点,并研究这些药物对扰乱致病网络的影响。药物再利用将现有药物重新用于新的临床适应症。这两种模式已成为新的药物发现范例,并受到 NIH 的大力推动。然而,目前我们对全基因组药物-靶标相互作用的结构和能量起源的了解有限,阻碍了合理有效的多药理学和药物再利用。为了应对这一挑战,该提案寻求开发并通过实验验证一种创新方法,以确定基因组规模上的高分辨率药物-靶标相互作用。基于我们成功的概念验证研究以及实验和计算实验室之间密切的多学科合作,我们将整合来自化学、结构和功能基因组学的大数据,并综合来自大规模图挖掘、全球集统计、化学信息学、生物信息学、分子建模和生物物理学。具体来说,我们将开发一种新的化学相似性搜索方法,即网络拓扑相似性的配体富集(ligENTS),将连续的化学宇宙映射到其全球药理学空间。我们将把 ligENTS 与我们已经成功的结构系统生物学平台整合起来,构建跨物种和跨折叠空间的高分辨率药物-靶点相互作用模型。为了证明我们提出的综合方法的可行性和创新性,我们将其应用于测试案例:抗感染药物的再利用。对抗生素产生耐药性的微生物的出现给人类健康带来了巨大威胁。重新利用安全药物来靶向病原体相关蛋白已成为对抗耐药病原体的新概念。然而,在病原体与宿主相互作用的背景下,在跨物种应用现有药物再利用策略方面存在重大技术障碍。我们的创新方法整合了分子成分及其在生物系统中相互作用的化学、结构和网络视图,从而通过确定人类和病原体中生物活性化合物的分子靶标,为发现安全有效的抗感染药物提供了新的解决方案。我们将在体外和体内实验验证根据我们的计算机预测产生的新型病原体相关蛋白和抗感染药物。如果成功,这项工作将为科学界和制药行业提供:(a)用于在基因组规模上识别三维药物-靶点相互作用模型的全新算法和相关软件,以及(b)经过实验验证的新型抗感染化合物和目标,具有对抗抗生素耐药性的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHEN K BURLEY其他文献
STEPHEN K BURLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHEN K BURLEY', 18)}}的其他基金
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
10473648 - 财政年份:2019
- 资助金额:
$ 29.4万 - 项目类别:
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
10004836 - 财政年份:2019
- 资助金额:
$ 29.4万 - 项目类别:
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
10686902 - 财政年份:2019
- 资助金额:
$ 29.4万 - 项目类别:
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
10476772 - 财政年份:2019
- 资助金额:
$ 29.4万 - 项目类别:
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
10224778 - 财政年份:2019
- 资助金额:
$ 29.4万 - 项目类别:
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
10702253 - 财政年份:2019
- 资助金额:
$ 29.4万 - 项目类别:
PDB MANAGEMENT BY THE RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
9768060 - 财政年份:2019
- 资助金额:
$ 29.4万 - 项目类别:
Omics data integration and analysis for structure-based multi-target drug design
基于结构的多靶点药物设计的组学数据集成和分析
- 批准号:
9285997 - 财政年份:2017
- 资助金额:
$ 29.4万 - 项目类别:
Drug discovery by integrating chemical genomics and structural systems biology
通过整合化学基因组学和结构系统生物学来发现药物
- 批准号:
8919745 - 财政年份:2014
- 资助金额:
$ 29.4万 - 项目类别:
Drug discovery by integrating chemical genomics and structural systems biology
通过整合化学基因组学和结构系统生物学来发现药物
- 批准号:
8764935 - 财政年份:2014
- 资助金额:
$ 29.4万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 29.4万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 29.4万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 29.4万 - 项目类别:
MagPAD: Magnetic Puncture, Access, and Delivery of Large Bore Devices to the Heart Via the Venous System
MagPAD:通过静脉系统对大口径装置进行磁穿刺、进入和输送至心脏
- 批准号:
10600737 - 财政年份:2023
- 资助金额:
$ 29.4万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 29.4万 - 项目类别: