Post-transcriptional gene regulation
转录后基因调控
基本信息
- 批准号:9256511
- 负责人:
- 金额:$ 71.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AreaBiochemicalBiochemical GeneticsBiogenesisBiological ProcessCellsCleaved cellComplexCongenital AbnormalityCouplingDefectDevelopmentDiseaseEmbryoEmbryonic DevelopmentEnzymesFertilityGene Expression RegulationGene Silencing PathwayGenesGeneticGenetic TranscriptionHumanLengthMalignant NeoplasmsMessenger RNAMethodsMicroRNAsMolecularMolecular ComputationsPathway interactionsPatientsPlayPoly(A) TailPrincipal InvestigatorProcessProteinsRNA InterferenceRecruitment ActivityRegulationRegulator GenesRegulatory PathwayReporter GenesResourcesRoleSmall Interfering RNATailTranscriptTranslational RepressionUntranslated RNAViral CancerVirusVirus DiseasesYeastsZebrafishexperimental studygastrulationgene functiongenetic approachhuman diseaseimprovedinsightmRNA Stabilitynovel therapeuticsprogramspublic health relevance
项目摘要
DESCRIPTION (provided by applicant): Much of eukaryotic gene regulation occurs post-transcriptionally, through differential mRNA stability and/or translational efficiency. The researc of this proposal seeks to answer fundamental questions within three interrelated areas of post-transcriptional gene control: microRNAs, RNA interference, and mRNA poly (A) tails. MicroRNAs (miRNAs) are ~22-nt RNAs that pair to mRNAs to direct their destabilization and translational repression. More than 600 miRNA genes have been identified in humans, and because most human genes are conserved targets of miRNAs, it is no surprise that miRNAs play important roles in mammalian development and human diseases, including viral infections and cancers. Molecular, computational, and structural approaches will be used to determine 1) how the microRNA-biogenesis machinery recognizes the cellular transcripts that are to be processed into microRNAs, 2) the biochemical basis of miRNA-target recognition and improved methods for predicting the most repressed targets, 3) the reason that mRNAs from reporter genes are repressed differently than those from endogenous genes, and 4) the mechanism and the biological function of the regulation of a miRNA by a long noncoding RNA. Results of these studies are expected to enhance the fundamental understanding of this important class of gene-regulatory molecules and provide resources helpful for many biologists, including those studying the roles of miRNAs in human diseases. RNA interference (RNAi) is a gene-regulatory pathway that many eukaryotic species use to silence transposons and viruses. In this pathway, short interfering RNAs (siRNAs) resembling miRNAs are loaded into Argonaute, which is an effector protein that cleaves transcripts with extensive complementarity to the siRNA. Genetic, structural, biochemical, and molecular approaches will be used to 1) identify and study additional proteins required for efficient RNAi in yeast, 2) determine how the siRNA-Argonaute complex forms and how it recognizes mRNA targets, and 3) investigate the unusual activities of zebrafish Argonaute. Results are expected to provide mechanistic insight into this gene-silencing pathway fundamental for defending many eukaryotic species against transposons and viruses, with practical implications for biologists using this pathway to study gene function, as well as those harnessing it to treat patients. mRNA poly (A) tails are important for mRNA stability and translational efficiency, and metazoan miRNAs usually act by recruiting enzymes that shortening poly (A) tails. The relationship between poly (A)-tail length and translational efficiency changes as the embryo develops. Molecular, computational, biochemical, and genetic approaches will be used to determine how coupling between tail length and translational efficiency is established before gastrulation and why it disappears after gastrulation. Results are
expected to provide fundamental insight into translational control and embryonic development, with potential implications for human fertility, developmental defects, or other diseases. OMB No. 0925-0001/0002 (Rev. 08/12 Approved Through 8/31/2015) Page Continuation Format Page
描述(由申请人证明):转录后的大部分真核基因,Thuce差异mRNA稳定性和 /或 /或 /或 /或 /或 /或 /或 /或 /或 /或 /或 /或 /或 /或 /或 /或 /或或授予该提案的研究。 RNA干扰和mRNA Poly(A)尾巴(miRNA)是MRNA的22-nt RNA,以指导其不可能和转化的RNA。 ,毫不奇怪的是,miRNA在哺乳动物的发育和人类呼吸和癌症中起着重要作用,将使用分子,计算和结构方法来确定1)将原始的转录本应原发作,2) - 识别和改进的方法提出了ST抑制靶标的,3)由内源基因抑制的mRNA的mRNA,以及4)4)长期非编码RNA的机制和法规。重要的基因常规分子,并为许多在人类探索中的生物学家(RNAi)提供了有用的资源。类似于miRNA的siRNA被加载到用siRNA裂解转录本的Argonaute蛋白。 3)斑马鱼Argona的异常活动。 Tazoan mirnas通过募集py(a)尾巴的关系来招募酶
预计将提供转化控制和胚胎发育,对人类的感觉缺陷或其他疾病有潜在的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID P BARTEL其他文献
DAVID P BARTEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID P BARTEL', 18)}}的其他基金
CRYSTAL STRUCTURE OF THE CATALYTIC CORE OF AN RNA POLYMERASE RIBOZYME
RNA聚合酶核酶催化核心的晶体结构
- 批准号:
8169216 - 财政年份:2010
- 资助金额:
$ 71.29万 - 项目类别:
CRYSTAL STRUCTURE OF THE CATALYTIC CORE OF AN RNA POLYMERASE RIBOZYME
RNA聚合酶核酶催化核心的晶体结构
- 批准号:
7955090 - 财政年份:2009
- 资助金额:
$ 71.29万 - 项目类别:
STRUCTURAL STUDIES OF THE CLASS I LIGASE RIBOZYME
I 类连接酶核酶的结构研究
- 批准号:
7721216 - 财政年份:2008
- 资助金额:
$ 71.29万 - 项目类别:
STRUCTURAL STUDIES OF THE CLASS I LIGASE RIBOZYME
I 类连接酶核酶的结构研究
- 批准号:
7182945 - 财政年份:2005
- 资助金额:
$ 71.29万 - 项目类别:
STRUCTURAL STUDIES OF THE CLASS I LIGASE RIBOZYME
I 类连接酶核酶的结构研究
- 批准号:
7369507 - 财政年份:2005
- 资助金额:
$ 71.29万 - 项目类别:
相似国自然基金
冻融循环介导葡萄糖苷酶与热解碳界面分子机制和生化活性研究
- 批准号:42307391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向生化物质检测的太赫兹手性光谱与传感技术研究
- 批准号:62335012
- 批准年份:2023
- 资助金额:240 万元
- 项目类别:重点项目
Tet(X)祖先蛋白的进化机制及生化功能研究
- 批准号:32302927
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于邻接矩阵内生化的我国银行业韧性研究:评估、预警与监管
- 批准号:72373053
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
SPION与BMP-2磁生化信号耦合靶向新生骨精准改善成骨微环境的研究
- 批准号:
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:
相似海外基金
Deciphering the lipid composition of primary cilia in human metabolic disease
破译人类代谢疾病中初级纤毛的脂质成分
- 批准号:
10696465 - 财政年份:2023
- 资助金额:
$ 71.29万 - 项目类别:
Identifying mechanistic pathways underlying RPE pathogenesis in models of pattern dystrophy
识别模式营养不良模型中 RPE 发病机制的机制途径
- 批准号:
10636678 - 财政年份:2023
- 资助金额:
$ 71.29万 - 项目类别:
Cellular mechanism of Arid1b haploinsufficiency-associated social deficit
Arid1b单倍体不足相关的社会缺陷的细胞机制
- 批准号:
10736386 - 财政年份:2023
- 资助金额:
$ 71.29万 - 项目类别:
The role of biomolecular condensates in regulating the cytoskeleton.
生物分子缩合物在调节细胞骨架中的作用。
- 批准号:
10751631 - 财政年份:2023
- 资助金额:
$ 71.29万 - 项目类别:
Impact of Heme During Group A Streptococcus Infection
A 族链球菌感染期间血红素的影响
- 批准号:
10825476 - 财政年份:2023
- 资助金额:
$ 71.29万 - 项目类别: