Measuring small molecule interactions with membrane proteins on single cells via detecting nanometer scale membrane deformations
通过检测纳米级膜变形来测量小分子与单细胞膜蛋白的相互作用
基本信息
- 批准号:9365667
- 负责人:
- 金额:$ 30.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAffinityAlgorithmic AnalysisAlgorithmsBindingBinding ProteinsBiological MarkersBiomedical ResearchCell membraneCell physiologyCell surfaceCellsCommunicationCommunitiesData AnalysesDependenceDetectionDrug TargetingEnvironmentEvaluationEventFourier TransformGoalsImageImaging technologyImmobilizationIndividualIndustryIonsKineticsLabelLiquid substanceMeasurementMeasuresMechanicsMembraneMembrane ProteinsMethodsMicroscopicMolecularMonitorNatureNoiseOpticsPerformancePharmaceutical PreparationsPreclinical Drug EvaluationPreparationProcessProtein ConformationProteinsProtocols documentationSamplingSignal TransductionSpecificityStructureSurfaceSystemTechnologyThermodynamicsTimeValidationWorkbasecell fixationcontrast imagingdata acquisitiondensitydrug discoveryexperimental studyhigh throughput analysismolecular massmolecular scalenanometernanoscalenew technologynovelnovel therapeuticsoptical imagingprotein functionrisk minimizationsample fixationscreeningsignal processingsmall moleculesuccesstemporal measurementtoolusability
项目摘要
PROJECT SUMMARY
Measuring interactions of molecules with membrane proteins on cells and quantifying the interaction kinetics in
real time are critical for understanding many cellular processes, for validating biomarkers, and for screening
drugs. This is because membrane proteins are responsible for many important cellular functions of cells,
including communication with other cells, sensing the surrounding environment, and transporting molecules
and ions in and out of cells. They also comprise nearly 60% of current drug targets. However, developing such
a capability has been a difficult challenge, especially for small molecules, because most traditional binding
kinetics measurement technologies are based on the detection of molecular mass, which diminishes with the
size of the molecule. Small molecules are the most important forms of drugs, accounting for over 70% of all the
drugs developed to date.
To address the unmet need, this project will develop a mechanically amplified optical detection technology.
The technology is based on a basic thermodynamics principle that a mechanical deformation in the cell
membrane occurs when a molecular binding event takes place on the cell. By accurately monitoring the
mechanical deformation, one can thus determine the kinetics of both large and small molecule binding with
membrane proteins on cells. This new strategy provides mechanical amplification to small binding signals,
which, together with a novel imaging technology and signal processing algorithm to track cell deformation with
sub-nanometer accuracy, make it possible to detect molecular interactions with membrane proteins. It also
allows the study of heterogeneous nature of cells by analyzing the binding kinetics variability between different
cells. Finally, the technology allows the study of membrane proteins that are difficult or impossible to isolate
from cells with intact native structures and activities.
The specific aims of the project are to 1) establish data acquisition and analysis algorithms to accurately
detect molecular binding-induced cell membrane deformation, 2) develop a high-throughput system for single
cell binding kinetics analysis, 3) develop a low-noise imaging technology for studying low-density membrane
proteins, and 4) validate the performance and usability of the new technology. The success of the project will
lead to a new tool for biomedical research community and industry for studying basic cellular processes, for
validating biomarkers, and for screening new drugs.
项目概要
测量分子与细胞膜蛋白的相互作用并量化相互作用动力学
实时对于理解许多细胞过程、验证生物标志物和筛选至关重要
药物。这是因为膜蛋白负责细胞的许多重要的细胞功能,
包括与其他细胞的通信、感知周围环境以及运输分子
以及进出细胞的离子。它们还包含近 60% 的当前药物靶点。然而,开发这样的
能力一直是一个艰巨的挑战,特别是对于小分子来说,因为大多数传统的结合
动力学测量技术基于分子质量的检测,分子质量随着分子质量的增加而减小
分子的大小。小分子是最重要的药物形式,占所有药物的70%以上
迄今为止开发的药物。
为了解决未满足的需求,该项目将开发机械放大光学检测技术。
该技术基于基本热力学原理,即细胞中的机械变形
当细胞上发生分子结合事件时,膜就会形成。通过准确监控
机械变形,因此可以确定大分子和小分子与
细胞上的膜蛋白。这种新策略为小结合信号提供机械放大,
结合新颖的成像技术和信号处理算法来跟踪细胞变形
亚纳米精度,使得检测分子与膜蛋白的相互作用成为可能。它还
允许通过分析不同细胞之间的结合动力学变异性来研究细胞的异质性
细胞。最后,该技术可以研究难以或不可能分离的膜蛋白
来自具有完整天然结构和活性的细胞。
该项目的具体目标是1)建立数据采集和分析算法以准确地
检测分子结合诱导的细胞膜变形,2)开发单细胞的高通量系统
细胞结合动力学分析,3)开发用于研究低密度膜的低噪声成像技术
蛋白质,4) 验证新技术的性能和可用性。该项目的成功将
为生物医学研究界和行业研究基本细胞过程提供了一种新工具,
验证生物标志物以及筛选新药。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NONGJIAN TAO其他文献
NONGJIAN TAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NONGJIAN TAO', 18)}}的其他基金
Charge sensitive optical detection for high-throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
9316572 - 财政年份:2016
- 资助金额:
$ 30.39万 - 项目类别:
Charge sensitive optical detection for high-throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
9147498 - 财政年份:2016
- 资助金额:
$ 30.39万 - 项目类别:
A personal exposure and response monitoring system for pediatric asthma study
用于小儿哮喘研究的个人暴露和反应监测系统
- 批准号:
9076677 - 财政年份:2015
- 资助金额:
$ 30.39万 - 项目类别:
Charge sensitive optical detection for high throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
8547801 - 财政年份:2012
- 资助金额:
$ 30.39万 - 项目类别:
Plasmonic mapping of ion channel activities in single cells
单细胞离子通道活动的等离子体图谱
- 批准号:
8281237 - 财政年份:2012
- 资助金额:
$ 30.39万 - 项目类别:
Charge sensitive optical detection for high throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
8728790 - 财政年份:2012
- 资助金额:
$ 30.39万 - 项目类别:
Charge sensitive optical detection for high throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
8432736 - 财政年份:2012
- 资助金额:
$ 30.39万 - 项目类别:
Plasmonic mapping of ion channel activities in single cells
单细胞离子通道活动的等离子体图谱
- 批准号:
8451893 - 财政年份:2012
- 资助金额:
$ 30.39万 - 项目类别:
A wireless multi-functional sensor badge for epidemiological studies
用于流行病学研究的无线多功能传感器徽章
- 批准号:
8520309 - 财政年份:2011
- 资助金额:
$ 30.39万 - 项目类别:
A wireless multi-functional sensor badge for epidemiological studies
用于流行病学研究的无线多功能传感器徽章
- 批准号:
8333970 - 财政年份:2011
- 资助金额:
$ 30.39万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Antibody-based therapy for fentanyl-related opioid use disorder
基于抗体的芬太尼相关阿片类药物使用障碍治疗
- 批准号:
10831206 - 财政年份:2023
- 资助金额:
$ 30.39万 - 项目类别:
Mechanisms and manipulation of force dependent behavior in T cell biology
T 细胞生物学中力依赖性行为的机制和操纵
- 批准号:
10681766 - 财政年份:2023
- 资助金额:
$ 30.39万 - 项目类别:
Elucidation and improved control of human induced pluripotent stem cell cardiac differentiation by using single-guide RNA-based cellular barcoding to track and manipulate lineages
通过使用基于单向导 RNA 的细胞条形码来跟踪和操纵谱系,阐明并改进对人类诱导多能干细胞心脏分化的控制
- 批准号:
10752369 - 财政年份:2023
- 资助金额:
$ 30.39万 - 项目类别:
Maturation of human humoral immunity through repeat malaria challenges
通过重复疟疾挑战使人体体液免疫成熟
- 批准号:
10720245 - 财政年份:2023
- 资助金额:
$ 30.39万 - 项目类别:
ST6GalNAc-I/MUC5AC promoting angiogenesis in lung adenocarcinoma
ST6GalNAc-I/MUC5AC促进肺腺癌血管生成
- 批准号:
10513140 - 财政年份:2022
- 资助金额:
$ 30.39万 - 项目类别: