Plasmonic mapping of ion channel activities in single cells
单细胞离子通道活动的等离子体图谱
基本信息
- 批准号:8281237
- 负责人:
- 金额:$ 18.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgonistBiological ModelsCalciumCell AdhesionCell CycleCell membraneCell physiologyCellsChemistryComputer softwareDendritesDetectionDoseDrug Delivery SystemsDrug ReceptorsElectric ConductivityElectrodesFluorescenceGlassGoalsGoldImageImaging TechniquesIndividualIon ChannelLabelLeadLifeLocationMapsMeasurementMeasuresMembraneMethodsMicroscopyModelingMonitorNeuronsNicotinic ReceptorsOptical MethodsOpticsPatch-Clamp TechniquesPerformancePerfusionPharmaceutical PreparationsPotassiumProcessProtocols documentationRecordsResolutionScreening procedureSignal TransductionSodiumSpatial DistributionSpecificityStructureSurfaceSurface Plasmon ResonanceSystemTechniquesTimebasedrug candidatedrug discoveryelectric impedancefluorescence imaginghigh throughput screeninginsightmillisecondnoveloperationpatch clampplasmonicsreceptorresearch studyresponsesubmicronsuccesstooltraffickingtransmission process
项目摘要
DESCRIPTION (provided by applicant): Studying and monitoring ion channel activities of single cells are critical for understanding many cellular processes, and for screening ion-channel targeted drug candidates. The current gold standard for electrophysiological recording of ion channel opening and closing processes is the patch clamp technique developed over the past several decades. Although it has been responsible for many fundamental discoveries, the patch clamp method uses a micropipette pressed tightly onto a cell membrane surface and detects electrical current associated with the ion channel activities, which is difficult to operate, low throughput (one- patch at a time) and often invasive (damage to the cell). The proposed project will develop a novel optical method to measure cellular electrical conductance changes due to the opening and closing of ions channels in the membrane. The method is based on the conversion of an electrical conductance signal into a plasmonic signal that can be imaged optically without using the micropipette. This paradigm shift approach promises non- invasive mapping of ion channel activities on single cells with millisecond temporal and sub-micron spatial resolution. The setup is fully compatible with the conventional optical, fluorescence and surface plasmon resonance imaging techniques, thus allowing for simultaneous application of multiple imaging techniques to the same cell, and providing comprehensive and complementary information on ion channels. Such an imaging technique is expected to lead to new insights into drug-ion channel receptor interactions and a new tool for high throughput ion-channel targeted drug discovery. The specific aims of the project includes: 1) develop the plasmonic technique for mapping of ion channel activities in living cells; 2) establish the value of the plasmonic techniqu for electrophysiological studies using nicotinic acetylcholine receptors as a model system; 3) demonstrate multifunctional measurements and validate the plasmonic technique with the patch clamp and fluorescence imaging techniques.
PUBLIC HEALTH RELEVANCE: Patch clamp technique is a powerful tool for studying ion channels of cells, but it is difficult to operate, low throughput and often invasive. The present project develops an optical method to measure electrical conductance, making it possible to map ion channel opening and closing activities noninvasively with high spatial and temporal resolution. This unprecedented capability is anticipated to provide new insights into ion channel activities and a new tool for high throughput screening of ion-channel targeted drugs.
描述(由申请人提供):单个细胞的研究和监测离子通道活动对于理解许多细胞过程以及筛查离子通道靶向药物至关重要。过去几十年来开发的贴片夹技术,用于离子通道开放和关闭过程的电生理记录的当前金标准是斑块夹技术。尽管它已经造成了许多基本发现的原因,但贴片夹方法使用了一个微目,紧紧地按在细胞膜表面上,并检测到与离子通道活动相关的电流,这很难操作,低吞吐量(一次 - 斑块)并且通常是侵入性的(对单元的损害)。拟议的项目将开发一种新型的光学方法,以测量由于膜中离子通道的打开和关闭而导致的细胞电导变化。该方法基于将电导信号转换为等离子信号,该信号可以在无需使用微孔的情况下进行光学成像。这种范式偏移方法有望通过毫秒和亚微米空间分辨率在单个细胞上对离子通道活性进行非侵入性映射。该设置与常规的光学,荧光和表面等离子体共振成像技术完全兼容,因此可以同时将多个成像技术应用于同一细胞,并在离子通道上提供全面和互补的信息。这种成像技术有望导致对药物 - 离子通道受体相互作用的新见解,以及用于高通道离子通道靶向药物发现的新工具。该项目的具体目的包括:1)开发用于生物细胞中离子通道活性的等离子技术; 2)使用烟碱乙酰胆碱受体作为模型系统,建立等离子技术对电生理研究的值; 3)演示多功能测量并使用贴片夹和荧光成像技术验证等离子技术。
公共卫生相关性:斑块夹技术是研究细胞离子通道的强大工具,但是很难操作,低吞吐量且通常是侵入性的。本项目开发了一种测量电导率的光学方法,使得可以通过高空间和时间分辨率毫不创新地绘制离子通道开放和关闭活动。预计这种前所未有的能力将为离子通道活动提供新的见解,并为离子通道靶向药物的高吞吐量筛查提供新的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NONGJIAN TAO其他文献
NONGJIAN TAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NONGJIAN TAO', 18)}}的其他基金
Measuring small molecule interactions with membrane proteins on single cells via detecting nanometer scale membrane deformations
通过检测纳米级膜变形来测量小分子与单细胞膜蛋白的相互作用
- 批准号:
9365667 - 财政年份:2017
- 资助金额:
$ 18.31万 - 项目类别:
Charge sensitive optical detection for high-throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
9316572 - 财政年份:2016
- 资助金额:
$ 18.31万 - 项目类别:
Charge sensitive optical detection for high-throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
9147498 - 财政年份:2016
- 资助金额:
$ 18.31万 - 项目类别:
A personal exposure and response monitoring system for pediatric asthma study
用于小儿哮喘研究的个人暴露和反应监测系统
- 批准号:
9076677 - 财政年份:2015
- 资助金额:
$ 18.31万 - 项目类别:
Charge sensitive optical detection for high throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
8547801 - 财政年份:2012
- 资助金额:
$ 18.31万 - 项目类别:
Charge sensitive optical detection for high throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
8728790 - 财政年份:2012
- 资助金额:
$ 18.31万 - 项目类别:
Plasmonic mapping of ion channel activities in single cells
单细胞离子通道活动的等离子体图谱
- 批准号:
8451893 - 财政年份:2012
- 资助金额:
$ 18.31万 - 项目类别:
Charge sensitive optical detection for high throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
8432736 - 财政年份:2012
- 资助金额:
$ 18.31万 - 项目类别:
A wireless multi-functional sensor badge for epidemiological studies
用于流行病学研究的无线多功能传感器徽章
- 批准号:
8520309 - 财政年份:2011
- 资助金额:
$ 18.31万 - 项目类别:
A wireless multi-functional sensor badge for epidemiological studies
用于流行病学研究的无线多功能传感器徽章
- 批准号:
8333970 - 财政年份:2011
- 资助金额:
$ 18.31万 - 项目类别:
相似国自然基金
FOXD1-SFRP2及其特异性激动剂在骨关节炎中的功能及作用机制探究
- 批准号:82372438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脂质纳米粒体内介导嵌合抗原受体-M1型巨噬细胞协同TLR激动剂治疗实体瘤的研究
- 批准号:82304418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TRPV4/SKCa信号轴在AMPK激动剂抑制微小动脉舒张作用中的机制研究
- 批准号:82304584
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向STING激动剂和TREM2抑制剂增强PD-1抑制剂对胰腺癌的抗肿瘤作用研究
- 批准号:82303740
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 18.31万 - 项目类别:
GPR39 as a Therapeutic Target in Aging-Related Vascular Cognitive Impairment and Dementia
GPR39 作为衰老相关血管认知障碍和痴呆的治疗靶点
- 批准号:
10734713 - 财政年份:2023
- 资助金额:
$ 18.31万 - 项目类别:
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
- 批准号:
10696749 - 财政年份:2023
- 资助金额:
$ 18.31万 - 项目类别:
Bacteria-derived xenobiotics in colon cancer prevention: Link to GPR109A and colonic ketogenesis
细菌源性异生素在结肠癌预防中的作用:与 GPR109A 和结肠生酮的联系
- 批准号:
10737017 - 财政年份:2023
- 资助金额:
$ 18.31万 - 项目类别:
Evaluating the efficacy of a novel NASH therapeutic
评估新型 NASH 疗法的疗效
- 批准号:
10698971 - 财政年份:2023
- 资助金额:
$ 18.31万 - 项目类别: