CAP: Trivalent Filovirus Vaccine for Pre- and Post-Exposure Vaccination
CAP:用于暴露前和暴露后疫苗接种的三价丝状病毒疫苗
基本信息
- 批准号:9354909
- 负责人:
- 金额:$ 12.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AchievementAddressAfricaAfricanAndes VirusAngolaAnimal ModelAntibodiesAntigensAttenuatedAttenuated Live Virus VaccineCase Fatality RatesCategoriesCaviaCell Culture TechniquesCenters for Disease Control and Prevention (U.S.)Clinical TrialsDataDemocratic Republic of the CongoDevelopmentDisease OutbreaksEbola virusEpidemicFamilyFiloviridaeFilovirusFrankfurt-Marburg Syndrome VirusGeneticGlycoproteinsGrowthGuineaH5 hemagglutininHamstersHumanImmune responseImmunizationImmunoglobulin GIn VitroIndividualInfluenza A Virus, H5N1 SubtypeInjection of therapeutic agentIntegral Membrane ProteinIvory CoastLiberiaLicensingMediatingModelingMono-SMusNational Institute of Allergy and Infectious DiseaseOutcomePhase III Clinical TrialsPlayProteinsProtocols documentationPublishingRNA VirusesRecombinantsRecoveryReportingRestonRodentRodent ModelRoleScheduleSecondary ImmunizationSierra LeoneSudanSudan Ebola virusTimeUnited States National Institutes of HealthVaccinationVaccinesVesicular stomatitis Indiana virusViralVirusWorkanimal rulebaseefficacy testingforestimmunogenicinfluenzavirusnonhuman primatepathogenprotective efficacyrecombinant virus vaccineresponsesuccesstreatment strategyvaccine candidatevectorvector vaccineweapons
项目摘要
Our main vaccine platform is based on recombinant vesicular stomatitis virus (rVSVs), a live-attenuate vaccine approach. Over the years we have generated several rVSVs expressing the glycoproteins (GP) of representative isolates of all species of Ebola virus: Sudan ebolavirus (SEBOV), Zaire ebolavirus (ZEBOV), Tai forest ebolavirus (TFEBOV), Bundibugyo ebolavirus (BEBOV) and Reston ebolavirus (REBOV). Additionally, we generated rVSVs expressing the GPs of two isolates of Marburg virus: Lake Victoria marburgvirus isolate Musoke and Angola. All vaccine vectors have been extensively characterized in cell culture and their protective efficacy has been evaluated in animal models (rodents, nonhuman primates) against homologous challenges. In an effort to decipher the mechanism of protection of the rVSV vaccine vectors we used the rVSV/ZEBOVgp as a model. We could demonstrate in nonhuman primates that antibodies specific to the foreign immunogen play a critical role in protection. Recent similar work also confirmed a role of antibodies for the mechanism of protection mediated by the rVSV vaccine vector against MARV. Overall, we postulate that antibodies (total and neutralizing IgG) play a key role for the mechanism of protection for all rVSV-based vaccine candidates.
In response to the recent Ebola outbreak in West Africa, the rVSV/ZEBOVgp vaccine candidate was fast-tracked and shown to be safe and immunogenic in humans. Phase III clinical trials with this vaccine candidate were initiated in Guinea, Sierra Leone and Liberia. To support the clinical trials we have shown that the GMP-produced rVSV/ZEBOVgp vaccine lot used in West Africa protects against challenge with a recent local isolate, a proof that had been missing at trial start. A recent preliminary report published in Lancet from the human trial in Guinea reports success of the rVSV/ZEBOVgp vaccine in a ring vaccination approach. This remarkable outcome is supported by another recent study of our group in nonhuman primates looking into the minimum time needed for protection. We could demonstrate complete protection when rVSV/ZEBOVgp was administered at least one week and partial protection when administered as close as three days prior to challenge. Overall, this is a milestone achievement in the development of Ebola countermeasures.
Cross-protection among the different Ebola and Marburg virus species is an important consideration, but is thought to be difficult to achieve due to relatively high genetic variability and the general lack of cross-protective antibodies among genera in particular, but also among species within a single genus. In a first attempt to address this issue, we previously used a single-injection protocol with three blended vaccine vectors (rVSV/SEBOVgp, rVSV/ZEBOVgp and rVSV/MARVgp) and demonstrated complete protection against challenge with the three homologous virus species. We have also performed another proof-of-concept study, in which we evaluated cross-protection following immunization with a single vaccine vector (rVSV/ZEBOVgp or rVSV/CIEBOVgp) and demonstrated partial cross-protection against challenge with a heterologous virus species (BEBOV). This demonstrates that monovalent rVSV-based vaccines may be useful against a newly emerging filovirus species; however, heterologous protection across species remains challenging and may depend on enhancing the immune responses either through booster immunizations or through the inclusion of multiple immunogens. Overall, we can conclude that single monovalent rVSV vaccine vectors can provide partial cross-protection in cases of challenge virus species that are genetically more closely related.
As mentioned above, one approach to overcome this limitation is the use of blended monovalent rVSV vaccine vectors, which provide broader protection against homologous and partial protection against certain heterologous challenges. Another approach to overcome the limitations in cross-protection is the use of multivalent rVSV vaccine vectors. In a proof-of-concept study in rodent models protection against ZEBOV and Andes virus (ANDV) or ZEBOV and influenza virus (H5N1) challenge was demonstrated using a single rVSV vector expressing both the ZEBOVgp and the ANDV glycoprotein or ZEBOVgp and a H5 hemagglutinin, respectively. This data showed that the use of bivalent rVSV vectors are a feasible approach to vaccination against multiple pathogens.
Based on the results described above, we have over the past two fiscal year successfully generated additional bivalent and trivalent rVSV vectors expressing two or three different filovirus GPs, one as a transmembrane protein (replacing the VSV glycoprotein) and one or two as soluble glycoproteins that will be secreted during vector replication. Recovery of these recombinant vaccine viruses turned out to be difficult but has recently been successful. In vitro characterization of these vectors, including viral growth curves and verification of foreign immunogen expression has been completed. Efficacy testing in the Ebola and Marburg hamster models has resulted in promising results; nonhuman primate studies are scheduled.
我们的主要疫苗平台基于重组囊泡性口腔炎病毒(RVSV),这是一种活鉴定疫苗方法。多年来,我们已经生成了几种RVSV,这些RVSV表达了所有埃博拉病毒的代表性分离物的糖蛋白(GP):苏丹埃博拉病毒(Sebov),Zaire Ebolavirus(Zebov),Tai Forest Ebolavirus(Tfebov),Bundibugyo Ebolavirus(Bundibugyo Ebolavirus)(budbolavirus)(Bebovirus)(bbolavirus)和埃博夫(Ebbolav)和埃博夫(Ebborirus)和RESON RESON(RESON)和RESON(RESON)(RESON)。此外,我们产生了表达两个马尔堡病毒分离株的GPS的RVSV:维多利亚湖Marburgvirus孤立的Musoke和Angola。所有疫苗向量均已在细胞培养中进行了广泛的特征,并且在动物模型(啮齿动物,非人类灵长类动物)中针对同源挑战进行了保护效果。为了破译RVSV疫苗向量的保护机理,我们使用RVSV/ZebovGP作为模型。我们可以在非人类灵长类动物中证明对外国免疫原具有特异性的抗体在保护中起着至关重要的作用。最近的类似工作还证实了抗体在RVSV疫苗载体针对MARV介导的保护机理中的作用。总体而言,我们假设抗体(总和中和IgG)对于所有基于RVSV的疫苗候选物的保护机理起着关键作用。
为了应对西非最近发生的埃博拉病毒爆发,RVSV/Zebovgp疫苗候选者被快速跟踪,并在人类中证明是安全且具有免疫原性的。在几内亚,塞拉利昂和利比里亚开始了使用该疫苗的III期临床试验。为了支持临床试验,我们已经表明,在西非使用的GMP生产的RVSV/Zebovgp疫苗批次可以通过最近的局部分离物来防止挑战,这一证明是在试验开始时缺少的。几内亚人类试验中发表在柳叶刀上的一份初步报告报告了RVSV/Zebovgp疫苗在环疫苗接种方法中的成功。这一显着的结果得到了我们小组在非人类灵长类动物中的另一项研究的支持,以研究保护所需的最低时间。当RVSV/ZebovGP至少一周和部分保护时,我们可以在挑战前三天接近时进行部分保护时,可以证明完全保护。总体而言,这是埃博拉对抗发展的里程碑成就。
不同的埃博拉病毒和马尔堡病毒物种之间的交叉保护是一个重要的考虑因素,但由于遗传变异性相对较高,并且尤其是属之间的跨保护抗体,因此被认为难以实现,而在单一属中也很难实现。在解决此问题的首次尝试中,我们以前使用了三种混合疫苗向量(RVSV/SEBOVGP,RVSV/ZEBOVGP和RVSV/MARVGP)的单一注射方案,并显示出对三种同源病毒物种的挑战完全保护。我们还进行了另一项概念验证研究,在该研究中,我们评估了与单个疫苗载体(RVSV/ZeboVGP或RVSV/CIEBOVGP)免疫后进行的交叉保护,并通过异型病毒物种(Bebov)表现出对挑战的部分交叉保护。这表明基于RVSV的单价疫苗可能对新出现的丝状病毒物种有用。但是,跨物种的异源保护仍然具有挑战性,可能取决于通过增强免疫或包含多种免疫原子来增强免疫反应。总体而言,我们可以得出结论,单一单价RVSV疫苗向量可以在遗传上更紧密相关的挑战病毒物种的情况下提供部分交叉保护。
如上所述,一种克服该限制的方法是使用混合单价RVSV疫苗向量,该疫苗向量提供了更广泛的保护,以防止对某些异源挑战的同源和部分保护。克服交叉保护局限性的另一种方法是使用多价RVSV疫苗向量。在一项针对针对Zebov和Andes病毒(ANDV)或Zebov和Zebov和流感病毒(H5N1)挑战的啮齿动物模型保护的概念验证研究中,使用单个RVSV矢量表达ZebovGP和ANDV Glycoprotein或ZebovgP或ZebovgP和H5 Hymagglutinin clastection。该数据表明,使用二价RVSV载体是对多种病原体疫苗接种的可行方法。
根据上述结果,在过去的两个会计年度中,我们成功地产生了表达两种或三种不同的Filevirus GPS的其他二价和三价RVSV矢量,一种是跨膜蛋白(更换VSV糖蛋白),将其作为可溶性糖蛋白作为可溶性的糖蛋白,作为可溶性的糖蛋白,这些蛋白将在矢量重复中分泌。这些重组疫苗病毒的恢复很困难,但最近取得了成功。这些载体的体外表征,包括病毒生长曲线和外源免疫原表达的验证。埃博拉病毒和马堡仓鼠模型中的功效测试导致了令人鼓舞的结果。计划进行非人类灵长类研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heinrich Feldmann其他文献
Heinrich Feldmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heinrich Feldmann', 18)}}的其他基金
Viral Hemorrhagic Fevers: Disease Modeling and Transmission
病毒性出血热:疾病建模和传播
- 批准号:
8336299 - 财政年份:
- 资助金额:
$ 12.17万 - 项目类别:
Uganda International Center for Excellence in Research
乌干达国际卓越研究中心
- 批准号:
10272203 - 财政年份:
- 资助金额:
$ 12.17万 - 项目类别:
CAP: Trivalent Filovirus Vaccine for Pre- and Post-Exposure Vaccination
CAP:用于暴露前和暴露后疫苗接种的三价丝状病毒疫苗
- 批准号:
8745578 - 财政年份:
- 资助金额:
$ 12.17万 - 项目类别:
Understanding the Emergence of Highly Pathogenic Avian Influenza Viruses
了解高致病性禽流感病毒的出现
- 批准号:
8946530 - 财政年份:
- 资助金额:
$ 12.17万 - 项目类别:
SARS-CoV-2: Pathogenesis and Countermeasure Development
SARS-CoV-2:发病机制和对策开发
- 批准号:
10927956 - 财政年份:
- 资助金额:
$ 12.17万 - 项目类别:
Viral Hemorrhagic Fevers: Disease Modeling and Transmission
病毒性出血热:疾病建模和传播
- 批准号:
10927843 - 财政年份:
- 资助金额:
$ 12.17万 - 项目类别:
Viral Hemorrhagic Fevers: Disease Modeling and Transmission
病毒性出血热:疾病建模和传播
- 批准号:
10272160 - 财政年份:
- 资助金额:
$ 12.17万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Global Center on Climate Change and Water Energy Food Health Systems - Community Engagement Core
全球气候变化和水能源食品卫生系统中心 - 社区参与核心
- 批准号:
10835680 - 财政年份:2023
- 资助金额:
$ 12.17万 - 项目类别:
Community-based Medication Adherence Support for Older Adults Living with HIV and Hypertension (CBA Intervention)
为感染艾滋病毒和高血压的老年人提供基于社区的药物依从性支持(CBA 干预)
- 批准号:
10752723 - 财政年份:2023
- 资助金额:
$ 12.17万 - 项目类别:
Projecting the age shift in HIV prevalence in sub-Saharan Africa: a necessary epidemiologic step to prepare for the silver tsunami
预测撒哈拉以南非洲艾滋病毒流行率的年龄变化:应对银色海啸的必要流行病学步骤
- 批准号:
10762075 - 财政年份:2023
- 资助金额:
$ 12.17万 - 项目类别:
Research and Capacity Building in Antimicrobial Resistance in West Africa
西非抗菌素耐药性研究和能力建设
- 批准号:
10685898 - 财政年份:2023
- 资助金额:
$ 12.17万 - 项目类别:
Project 1 - Surveillance and monitoring systems to identify strategies to improve perinatal practices [Parent Title: PREVENTING INFANT INFECTIONS WITH IMPLEMENTATION SCIENCE IN MALAWI]
项目 1 - 监测和监测系统,以确定改善围产期实践的策略[父标题:马拉维通过实施科学预防婴儿感染]
- 批准号:
10701195 - 财政年份:2023
- 资助金额:
$ 12.17万 - 项目类别: