Advances in Geospatial Survival Modeling for Small Area Cancer Data
小区域癌症数据地理空间生存建模的进展
基本信息
- 批准号:8828611
- 负责人:
- 金额:$ 7.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvocateAffectAgeAreaBehaviorCancer ModelCensusesComputer softwareCountyDataDependenceDependencyDerivation procedureDevelopmentDiagnosisDiseaseDisease remissionEnvironmental Risk FactorEvaluationEventGenderGeographic LocationsGroupingHealthHealth ResourcesIndividualLabelLinkLocationMalignant NeoplasmsMeasuresMethodologyMethodsModelingOutcomePersonsProbabilityRaceRecoveryRelapseResearch PersonnelRiskRoleSurvival AnalysisSurvivorsTimeVariantWeightabstractingbasecancer diagnosiscancer riskcancer typedemographicsdensityexperiencegeographic differencegeographic riskhazardmodel developmentnovelnovel strategiespollutantresidencesimulationwaste treatment
项目摘要
DESCRIPTION (provided by applicant): Abstract It is the primary focus of this aim to broaden the definition of the survivor, density and hazard function to include spatial labeling by explicit
modeling of the spatial dependency. This involves the direct derivation of (s,t), S(s,t), and h(s,t and their related marginal and conditional functions. The application of these novel derivations with standard geographically-augmented survival distributions will be examined. Spatially dependent censoring is also a focus as a sub- aim. We plan to model this aspect and evaluate the role of this in direct spatial and contextual survival models. Predictors in survival modeling can be individual (age, gender, race etc) or contextual (e. g. census tract demographics). They can also vary spatially in their linkage to survival risk. We propose to examine the development of models where predictor selection has a spatial label and where some regions do include and other exclude predictors in models. We plan to implement the modeling approaches above via the use of the Bayesian paradigm and will likely use McMC based packages or, if appropriate, INLA. Evaluation will be simulation based and we will use R and associated linked software (MCMCpack, BRugs, R2WinBUGS, R2OpenBUGS) for this purpose.
描述(由申请人提供):摘要该目标的主要焦点是扩大幸存者、密度和危险函数的定义,以包括通过明确的空间标记
空间依赖性建模。这涉及 (s,t)、S(s,t) 和 h(s,t) 的直接推导及其相关的边际函数和条件函数。将检查这些新颖推导与标准地理增强生存分布的应用。空间相关审查也是一个子目标,我们计划对这一方面进行建模,并评估其在直接空间和情境生存模型中的作用。生存建模中的预测因素可以是个体(年龄、性别、种族)。等)或上下文(例如人口普查区人口统计),它们与生存风险的联系也可能在空间上有所不同,我们建议研究预测变量选择具有空间标签以及某些区域确实在模型中包含和排除预测变量的模型的开发。我们计划通过使用贝叶斯范式来实现上述建模方法,并且可能会使用基于 McMC 的软件包,或者如果合适的话,INLA 评估将基于模拟,我们将使用 R 和相关的链接软件(MCMCpack、 BRugs、R2WinBUGS、R2OpenBUGS)用于此目的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian cure-rate survival model with spatially structured censoring.
具有空间结构审查的贝叶斯治愈率生存模型。
- DOI:10.1016/j.spasta.2018.08.007
- 发表时间:2018
- 期刊:
- 影响因子:2.3
- 作者:Onicescu,Georgiana;Lawson,AndrewB
- 通讯作者:Lawson,AndrewB
Bayesian accelerated failure time model for space-time dependency in a geographically augmented survival model.
- DOI:10.1177/0962280215596186
- 发表时间:2017-10
- 期刊:
- 影响因子:2.3
- 作者:Onicescu G;Lawson A;Zhang J;Gebregziabher M;Wallace K;Eberth JM
- 通讯作者:Eberth JM
Spatially explicit survival modeling for small area cancer data.
小区域癌症数据的空间明确生存模型。
- DOI:10.1080/02664763.2017.1288200
- 发表时间:2018
- 期刊:
- 影响因子:1.5
- 作者:Onicescu,G;Lawson,A;Zhang,J;Gebregziabher,Mulugeta;Wallace,Kristin;Eberth,JM
- 通讯作者:Eberth,JM
Spatially-explicit survival modeling with discrete grouping of cancer predictors.
具有离散分组的癌症预测因子的空间明确的生存模型。
- DOI:10.1016/j.sste.2018.06.001
- 发表时间:2019
- 期刊:
- 影响因子:3.4
- 作者:Onicescu,Georgiana;Lawson,AndrewB;Zhang,Jiajia;Gebregziabher,Mulugeta;Wallace,Kristin;Eberth,JanM
- 通讯作者:Eberth,JanM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew B. Lawson其他文献
Computation
- DOI:
10.1201/9781003043997-4 - 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Andrew B. Lawson - 通讯作者:
Andrew B. Lawson
Approaches to the space-time modelling of infectious disease behaviour.
传染病行为时空建模方法。
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Andrew B. Lawson;Petra Leimich - 通讯作者:
Petra Leimich
Andrew B. Lawson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew B. Lawson', 18)}}的其他基金
Ovarian Cancer Survival in African-American Women
非裔美国女性卵巢癌的生存率
- 批准号:
10642946 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Bayesian Modeling for Prenatal, Natal and Postnatal Predictors of Developmental Defects of Enamel in Primary Maxillary Central Incisor Teeth
上颌中切牙牙釉质发育缺陷的产前、产中和产后预测因子的贝叶斯模型
- 批准号:
10216219 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Ovarian Cancer Survival in African-American Women
非裔美国女性卵巢癌的生存率
- 批准号:
9887475 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Ovarian Cancer Survival in African-American Women
非裔美国女性卵巢癌的生存率
- 批准号:
10207548 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Ovarian Cancer Survival in African-American Women
非裔美国女性卵巢癌的生存率
- 批准号:
10434896 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Advances in Geospatial Survival Modeling for Small Area Cancer Data
小区域癌症数据地理空间生存建模的进展
- 批准号:
8705126 - 财政年份:2014
- 资助金额:
$ 7.29万 - 项目类别:
Surveillance of Spatial Case Event Data in Cancer Studies
癌症研究中空间案例事件数据的监测
- 批准号:
8705128 - 财政年份:2014
- 资助金额:
$ 7.29万 - 项目类别:
Bridging Genomics and Medicine by Ontology Fingerprints
通过本体指纹连接基因组学和医学
- 批准号:
8530277 - 财政年份:2012
- 资助金额:
$ 7.29万 - 项目类别:
Bridging Genomics and Medicine by Ontology Fingerprints
通过本体指纹连接基因组学和医学
- 批准号:
8042355 - 财政年份:2012
- 资助金额:
$ 7.29万 - 项目类别:
Development and Evaluation of Spatiotemporal Predictive Health Surveillance Tools
时空预测健康监测工具的开发和评估
- 批准号:
8189463 - 财政年份:2011
- 资助金额:
$ 7.29万 - 项目类别:
相似海外基金
MRWeight: Medical Residents Learning Weight Management Counseling Skills -- A Multi-Modal, Technology-Assisted, Spaced Education Program
MRWeight:住院医生学习体重管理咨询技能——多模式、技术辅助、间隔教育计划
- 批准号:
10561356 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
International Conference on Cancer Health Disparities
国际癌症健康差异会议
- 批准号:
10606212 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Bioethical Issues Associated with Objective Behavioral Measurement of Children with Hearing Loss in Naturalistic Environments
与自然环境中听力损失儿童的客观行为测量相关的生物伦理问题
- 批准号:
10790269 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Learning and Living with Wildfire Smoke: Creating Clean Air Environments in Schools through Youth Participatory Action Research
与野火烟雾一起学习和生活:通过青年参与行动研究在学校创造清洁的空气环境
- 批准号:
10662674 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
- 批准号:
10633905 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别: