Notch Pathway Regulation of Intestinal Epithelial Cell Homeostasis
肠上皮细胞稳态的Notch通路调节
基本信息
- 批准号:8631158
- 负责人:
- 金额:$ 32.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-18 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultApoptosisBiological AssayBiological ModelsCell CountCell Differentiation processCell Fate ControlCell LineageCell ProliferationCell physiologyCellsChronicColumnar CellComputer SimulationDataEndocrineEnterocytesEpithelial CellsGene Expression ProfilingGenesGeneticGenetic ModelsGrowthHomeostasisHumanImmunohistochemistryIn VitroIntestinesKineticsLaboratory ResearchMaintenanceMalignant NeoplasmsMeasuresModelingMusNotch Signaling PathwayOrganoidsPathway interactionsPlayPopulationPopulation DynamicsProcessRadiationRadiation InjuriesReceptor SignalingRegulationReverse Transcriptase Polymerase Chain ReactionRoleSecretory CellSignal PathwaySignal TransductionSourceStem cellsSystemTestingTimeTissuesToxic effectVillusbasecell typedesigngenetic manipulationhuman diseasehuman stem cellsintestinal epitheliummathematical modelmouse modelnotch proteinprogenitorpublic health relevancerepairedresponsestemstem cell fatestem cell populationtranscription factortranscriptome sequencing
项目摘要
Project Summary
This revised new R01 application focuses on pathways regulating intestinal epithelial cell homeostasis.
The project investigates the role of the Notch signaling pathway for regulation of intestinal stem cells,
examining both active and quiescent stem cell populations marked by Lgr5, Olfm4, Bmi1, and Lrig1.
Notch is well established as a critical regulator of cell fate via regulation of the secretory lineage-
specific transcription factor Atoh1. Our recent studies have shown that Notch also plays a distinct role
in the maintenance of intestinal stem cells in an Atoh1-independent mechanism and this finding serves
as the underlying rationale for this application. We have established that chronic Notch inhibition in
adult mice results in decreased progenitor cell proliferation and a marked decrease in expression of the
crypt base columnar cell (CBC) marker Olfm4. Furthermore, these studies demonstrated that the
actively cycling crypt base columnar stem cell (CBC) is a direct cellular Notch target and that disruption
of Notch signaling results in loss of CBCs. The overriding hypothesis for this proposal is: Notch
signaling regulates the transition from ISC to fated progenitor cells and loss of Notch signaling leads to
depletion of the stem cell pool and activation of quiescent stem cells to replenish the pool. To test this
hypothesis studies will examine intact mouse models (genetic and pharmacologic), mouse intestinal
organoids and, importantly, a new human organoid model. This project will, for the first time, test
whether Notch regulation of human intestine parallels the findings in the mouse. Genetic manipulation
and marking of ISC cell populations in mouse will take advantage of Cre drivers specific for active or
quiescent ISCs. Strains of floxed-gene mice will allow deletion or activation of Notch pathway
components in specific ISC cell populations. RNA-Seq gene expression profiling will be used to identify
Notch-responsive genes and computational modeling will inform our understanding of progenitor cell
population dynamics. Three specific aims are proposed: (1) Test the hypothesis that CBC stem cells
are dynamically regulated by Notch signaling; (2) Test the hypothesis that Notch regulates the ability of
quiescent stem cells to repopulate the active cycling stem and progenitor cell pool; (3) Test the
hypothesis that Notch signaling regulates cellular differentiation and stem cell function in human in vitro
derived intestinal organoids. These studies are important to further our understanding of the function of
different intestinal stem cell populations and to characterize the importance of Notch signaling for
human intestinal epithelial cell homeostasis. Since current human disease therapies are under design
to target the Notch pathway, it is crucial to understand the function of this pathway in the intestine to
avoid the intestinal toxicity that can result from systemic disruption of this pathway.
项目概要
此次修订后的新 R01 应用重点关注调节肠上皮细胞稳态的途径。
该项目研究了 Notch 信号通路在调节肠道干细胞中的作用,
检查由 Lgr5、Olfm4、Bmi1 和 Lrig1 标记的活性和静止干细胞群。
Notch 已被广泛认为是通过调节分泌谱系来调节细胞命运的关键因子。
特异性转录因子Atoh1。我们最近的研究表明,Notch 也发挥着独特的作用
以 Atoh1 独立机制维持肠道干细胞,这一发现有助于
作为此应用程序的基本原理。我们已经确定,慢性Notch抑制
成年小鼠导致祖细胞增殖减少,并且
隐窝基底柱状细胞 (CBC) 标记 Olfm4。此外,这些研究表明
活跃循环的隐窝基底柱状干细胞 (CBC) 是一个直接的细胞 Notch 目标,并且这种破坏
Notch 信号传导导致 CBC 丢失。该提案最重要的假设是:Notch
信号传导调节从 ISC 到命运祖细胞的转变,Notch 信号传导的丧失会导致
干细胞库的耗尽和静止干细胞的激活以补充干细胞库。为了测试这个
假设研究将检查完整的小鼠模型(遗传和药理学)、小鼠肠道
类器官,更重要的是,一种新的人类类器官模型。该项目将首次测试
Notch 对人类肠道的调节是否与小鼠的研究结果相似。基因操纵
小鼠 ISC 细胞群的标记将利用特定于活性或
静态 ISC。 floxed基因小鼠品系将允许Notch通路缺失或激活
特定 ISC 细胞群中的成分。 RNA-Seq 基因表达谱将用于鉴定
Notch响应基因和计算模型将有助于我们了解祖细胞
人口动态。提出了三个具体目标:(1)检验 CBC 干细胞的假设
由Notch信号动态调节; (2)检验Notch调节能力的假设
静止干细胞重新填充活跃循环干细胞和祖细胞池; (3) 测试
Notch 信号传导在体外调节人类细胞分化和干细胞功能的假设
衍生的肠道类器官。这些研究对于加深我们对功能的理解具有重要意义。
不同的肠道干细胞群并表征Notch信号传导的重要性
人肠上皮细胞稳态。由于当前的人类疾病疗法正在设计中
为了靶向 Notch 通路,了解该通路在肠道中的功能至关重要
避免该途径的系统性破坏可能导致的肠道毒性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LINDA C. SAMUELSON其他文献
LINDA C. SAMUELSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LINDA C. SAMUELSON', 18)}}的其他基金
Wnt Pathway Regulation of Gastric Stem Cell Function
胃干细胞功能的 Wnt 通路调控
- 批准号:
10557120 - 财政年份:2022
- 资助金额:
$ 32.98万 - 项目类别:
2022 James W. Freston Conference: Gastrointestinal Organoids and Engineered Organ Systems
2022 年 James W. Freston 会议:胃肠类器官和工程器官系统
- 批准号:
10538834 - 财政年份:2022
- 资助金额:
$ 32.98万 - 项目类别:
Wnt Pathway Regulation of Gastric Stem Cell Function
胃干细胞功能的 Wnt 通路调控
- 批准号:
10364859 - 财政年份:2022
- 资助金额:
$ 32.98万 - 项目类别:
Mechanisms of Intestinal Stem Cell Injury and Repair
肠干细胞损伤与修复机制
- 批准号:
10197914 - 财政年份:2018
- 资助金额:
$ 32.98万 - 项目类别:
Notch Pathway Regulation of Intestinal Epithelial Cell Homeostasis
肠上皮细胞稳态的Notch通路调节
- 批准号:
8915683 - 财政年份:2013
- 资助金额:
$ 32.98万 - 项目类别:
Mechanisms of Gastric Mucosal Transformation in Hip1r-Deficient Mice
Hip1r缺陷小鼠胃粘膜转化机制
- 批准号:
7845837 - 财政年份:2009
- 资助金额:
$ 32.98万 - 项目类别:
Mechanisms of Gastric Mucosal Transformation in Hip1r-Deficient Mice
Hip1r缺陷小鼠胃粘膜转化机制
- 批准号:
7778875 - 财政年份:2008
- 资助金额:
$ 32.98万 - 项目类别:
Mechanisms of Gastric Mucosal Transformation in Hip1r-Deficient Mice
Hip1r缺陷小鼠胃粘膜转化机制
- 批准号:
7596416 - 财政年份:2008
- 资助金额:
$ 32.98万 - 项目类别:
Mechanisms of Gastric Mucosal Transformation in Hip1r-Deficient Mice
Hip1r缺陷小鼠胃粘膜转化机制
- 批准号:
8227976 - 财政年份:2008
- 资助金额:
$ 32.98万 - 项目类别:
Mechanisms of Gastric Mucosal Transformation in Hip1r-Deficient Mice
Hip1r缺陷小鼠胃粘膜转化机制
- 批准号:
8050179 - 财政年份:2008
- 资助金额:
$ 32.98万 - 项目类别:
相似国自然基金
内质网应激通过m6A甲基化调控牛卵巢颗粒细胞坏死性凋亡机制研究
- 批准号:32372887
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肿瘤特异性转录本MARCO-TST通过调控AIF核转位抑制细胞凋亡介导HER2阳性乳腺癌治疗耐药的机制研究
- 批准号:82303808
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脑微血管内皮细胞来源外泌体YY1靶向MARK4激活Hippo信号通路促进神经元凋亡导致缺血性脑卒中神经损伤的机制研究
- 批准号:82301496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PCN/HA光催化促进凋亡成纤维细胞胞葬清除在祛除颌面增生性瘢痕中的作用及机制研究
- 批准号:82301052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负压诱导下自体外周血单核细胞来源的凋亡囊泡对颞下颌关节骨关节炎的临床治疗研究
- 批准号:82370985
- 批准年份:2023
- 资助金额:70 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 32.98万 - 项目类别:
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 32.98万 - 项目类别:
The role of BET proteins in pathological cardiac remodeling
BET蛋白在病理性心脏重塑中的作用
- 批准号:
10538142 - 财政年份:2023
- 资助金额:
$ 32.98万 - 项目类别:
The Role of CD4+ Memory T cell Subtypes in Periodontal Disease Recurrence
CD4 记忆 T 细胞亚型在牙周病复发中的作用
- 批准号:
10642981 - 财政年份:2023
- 资助金额:
$ 32.98万 - 项目类别:
Exploiting the Metabolic Dependencies of Pediatric AML
利用儿科 AML 的代谢依赖性
- 批准号:
10664637 - 财政年份:2023
- 资助金额:
$ 32.98万 - 项目类别: