Multi-wavelength femtosecond laser sources for intravital multiphoton microscopy
用于活体多光子显微镜的多波长飞秒激光源
基本信息
- 批准号:8852123
- 负责人:
- 金额:$ 60.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmplifiersAnimalsAreaBackBiologicalBone MarrowCellsClinicalColorEngraftmentFiberFrequenciesGenerationsGoalsHealthHematopoietic NeoplasmsHematopoietic Stem Cell TransplantationHematopoietic stem cellsHomingImageImaging technologyIndividualIndustryLabelLasersLeadLifeLightLymphomaMethodsMicroscopeMicroscopyMonitorMusOpticsOsteoblastsPatientsPhysiologic pulseProceduresPulse RatesRecoveryResearchResearch PersonnelSemaphorinsSourceSpeedStem Cell ResearchStem cell transplantStem cellsSystemTechniquesTechnologyTelecommunicationsTestingTissuesTransplantationbasebioimagingcell typecohortcostdesignfluorophoreimaging modalityimprovedin vivoin vivo imaginginnovationinsightintravital imagingleukemialipid biosynthesismeetingsnovelprogramsregenerativeresearch studysapphire lasersecond harmonictelecom-wavelength
项目摘要
DESCRIPTION (provided by applicant): This is a collaborative research program that brings together an optical technology group (Dr. Xu) and an in vivo imaging group (Dr. Lin). The two groups share a common goal to develop imaging technology for solving biomedical problems and addressing clinical needs. Here we focus on the need to improve hematopoietic stem cell (HSC) homing and engraftment after HSC transplantation (HSCT). This life-saving procedure is often the last hope of cure for patients with cancers of the blood system such as leukemia or lymphoma, but successful transplantation can be achieved only if a sufficient number of transplanted HSCs are able to reach and engraft the patient's bone marrow (BM). To help improve stem cell homing and engraftment, the Lin group has developed intravital imaging methods to track individual HSCs in the BM of live animals after transplantation. However, the current view of the BM microenvironment is severely limited due to the inadequacies of the available imaging technology. To gain a more comprehensive view of the BM microenvironment, where multiple cell types interact and form a supportive niche for HSC engraftment, the Xu group will develop a novel fiber-based source for nonlinear microscopy, which will enable simultaneous imaging of multiple fluorescent indicators as well as enabling label-free harmonic generation and vibrational imaging. Integration of the new source with the intravital microscope will enable the Lin group to proceed with experiments that had been envisioned but were held back due to lack of a suitable technology. The proposed source is based on the following innovations: (1) Soliton self-frequency shift (SSFS) in a large mode area (LMA) fiber enables the generation of energetic, widely wavelength tunable soliton pulses seeded from a fiber laser at the telecom wavelength, and the subsequent second harmonic generation (SHG) of the fundamental wavelength enables a single turn-key, low-cost, fiber-based source to generate three independent wavelength tunable sources to excite multiple fluorophores. 2) All-fiber, high-speed intensity modulation to electronically control the wavelength, repetition rate, and pulse delay. 3) A single light source will enable experiments that currently require two synchronized Ti:sapphire lasers plus an optical parametric oscillator (OPO) and a regenerative amplifier. Leveraging the highly mature and integrated techniques that have been developed for the telecommunications industry, we aim to create a "telecom grade" femtosecond source that is truly robust and versatile. The versatility is important for tailoring the source to meet specific imaging needs while the robustness is essential for the biological studies that require longitudinal imaging of large cohorts of animals. The successful completion of this program will not only advance imaging technology but also advance stem cell research. In addition, the technology will be broadly applicable and will significantly increase the accessibility of femtosecond sources to other biomedical researchers.
描述(由申请人提供):这是一个协作研究计划,将光学技术组(XU博士)和一个体内成像组(Lin博士)汇集在一起。这两组共享一个共同的目标,以开发成像技术来解决生物医学问题并满足临床需求。在这里,我们关注的是需要改善HSC移植后(HSCT)后造血干细胞(HSC)的归巢和植入。对于血液系统(例如白血病或淋巴瘤)患者来说,这种挽救生命的过程通常是治愈的最后希望,但是只有在足够数量的移植HSC能够接触并植入患者的骨髓(BM)时,才能成功地进行移植。为了帮助改善干细胞寄养和植入,LIN组开发了浸泡成像方法,以跟踪移植后活体动物BM中的单个HSC。但是,由于可用成像技术的不足,BM微环境的当前观点受到严重限制。为了获得BM微环境的更全面的视图,其中多种细胞类型相互作用并形成了HSC植入的支持性利基市场,XU组将开发出基于非线性显微镜的新型纤维来源,这将启用多个荧光指示剂的同时成像,并启用标记无标记的和无关的和振动的影像。新来源与插入显微镜的集成将使Lin组能够进行已设想的实验,但由于缺乏合适的技术而被阻止。 The proposed source is based on the following innovations: (1) Soliton self-frequency shift (SSFS) in a large mode area (LMA) fiber enables the generation of energetic, widely wavelength tunable soliton pulses seeded from a fiber laser at the telecom wavelength, and the subsequent second harmonic generation (SHG) of the fundamental wavelength enables a single turn-key, low-cost, fiber-based产生三个独立波长可调源以激发多个荧光团的来源。 2)全纤维,高速度调制,以电子控制波长,重复率和脉冲延迟。 3)单个光源将启用当前需要两个同步的Ti:蓝宝石激光器以及光学参数振荡器(OPO)和再生放大器的实验。利用为电信行业开发的高度成熟和集成的技术,我们旨在创建一个真正强大且多功能的“电信等级” femtsecond。多功能性对于调整来源以满足特定的成像需求很重要,而鲁棒性对于需要大量动物的纵向成像的生物学研究至关重要。该程序的成功完成不仅将推进成像技术,还将推进干细胞研究。此外,该技术将广泛适用,并将大大提高飞秒来源对其他生物医学研究人员的可访问性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles P. Lin其他文献
Deep tissue single cell MSC ablation using a fiber laser source to evaluate therapeutic potential in osteogenesis imperfecta
使用光纤激光源进行深部组织单细胞 MSC 消融评估成骨不全症的治疗潜力
- DOI:
10.1117/12.2213292 - 发表时间:
2016 - 期刊:
- 影响因子:4.3
- 作者:
K. Tehrani;Emily G Pendleton;Charles P. Lin;L. Mortensen - 通讯作者:
L. Mortensen
Computational modeling of stress transient and bubble evolution in short-pulse laser-irradiated melanosome particles
短脉冲激光照射黑素体颗粒中应力瞬态和气泡演化的计算模型
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
M. Strauss;P. Amendt;R. London;D. Maitland;M. Glinsky;Charles P. Lin;Michael W. Kelly - 通讯作者:
Michael W. Kelly
A Sensorless Adaptive Optics Scanning Laser Ophthalmoscope for Mice
用于小鼠的无传感器自适应光学扫描激光检眼镜
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
D. Biss;R. Webb;Yaopeng Zhou;T. Bifano;Charles P. Lin - 通讯作者:
Charles P. Lin
Declined presentation inflammatory modulation of hematopoietic stromal niche cells by TNF-α leads to rapid mobilization of hematopoietic stem/progenitor cells (HSPC) and neutrophils
- DOI:
10.1016/j.exphem.2015.06.134 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Shin-Young Park;Eun Young Anna Han;Yookyung Jung;Charles P. Lin;Leslie E. Silberstein - 通讯作者:
Leslie E. Silberstein
Interpretation of the nitrogen spin densities in the primary donor cation of photosynthetic reaction centers
光合反应中心主要供体阳离子中氮自旋密度的解释
- DOI:
- 发表时间:
1986 - 期刊:
- 影响因子:0
- 作者:
Charles P. Lin;J. Norris - 通讯作者:
J. Norris
Charles P. Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles P. Lin', 18)}}的其他基金
Local Skull Marrow Sensing and Response to CNS Inflammation
局部颅骨对中枢神经系统炎症的感知和反应
- 批准号:
10654045 - 财政年份:2022
- 资助金额:
$ 60.2万 - 项目类别:
(PQC2) Localization as a determinant of cancer dormancy
(PQC2) 定位作为癌症休眠的决定因素
- 批准号:
8876904 - 财政年份:2015
- 资助金额:
$ 60.2万 - 项目类别:
(PQC2) Localization as a determinant of cancer dormancy
(PQC2) 定位作为癌症休眠的决定因素
- 批准号:
9262173 - 财政年份:2015
- 资助金额:
$ 60.2万 - 项目类别:
Multi-wavelength femtosecond laser sources for intravital multiphoton microscopy
用于活体多光子显微镜的多波长飞秒激光源
- 批准号:
8562082 - 财政年份:2013
- 资助金额:
$ 60.2万 - 项目类别:
Multi-wavelength femtosecond laser sources for intravital multiphoton microscopy
用于活体多光子显微镜的多波长飞秒激光源
- 批准号:
9087255 - 财政年份:2013
- 资助金额:
$ 60.2万 - 项目类别:
Multi-wavelength femtosecond laser sources for intravital multiphoton microscopy
用于活体多光子显微镜的多波长飞秒激光源
- 批准号:
8701293 - 财政年份:2013
- 资助金额:
$ 60.2万 - 项目类别:
相似国自然基金
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向超精密电机系统的双降压对称半桥功率放大器噪声机理及抑制策略研究
- 批准号:52307042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紧凑型大功率微波速调管放大器研究
- 批准号:62371108
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于SISL的三维集成封装宽带高效率功率放大器研究
- 批准号:62301387
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
- 批准号:
10738994 - 财政年份:2023
- 资助金额:
$ 60.2万 - 项目类别:
A wireless closed-loop sleep modulation system-on-chip
无线闭环睡眠调制片上系统
- 批准号:
10733872 - 财政年份:2023
- 资助金额:
$ 60.2万 - 项目类别:
PQ6: Lipocalin-2 as a therapeutic target for prevention of cancer cachexia
PQ6:Lipocalin-2 作为预防癌症恶病质的治疗靶点
- 批准号:
10379260 - 财政年份:2021
- 资助金额:
$ 60.2万 - 项目类别:
PQ6: Lipocalin-2 as a therapeutic target for prevention of cancer cachexia
PQ6:Lipocalin-2 作为预防癌症恶病质的治疗靶点
- 批准号:
10152268 - 财政年份:2021
- 资助金额:
$ 60.2万 - 项目类别:
Understanding the dynamics of cochlear amplification
了解耳蜗放大的动力学
- 批准号:
10531629 - 财政年份:2021
- 资助金额:
$ 60.2万 - 项目类别: