A wireless closed-loop sleep modulation system-on-chip
无线闭环睡眠调制片上系统
基本信息
- 批准号:10733872
- 负责人:
- 金额:$ 46.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcoustic StimulationAddressAffectAgreementAmplifiersAnimal ModelAnimalsAuditoryBehaviorBiological ModelsBiteBrainCanis familiarisChargeClassificationCommunitiesData AnalysesData CompressionDevicesDiseaseElectric StimulationElectrophysiology (science)EyeFamily suidaeFelis catusHealthHomeHousingHumanImmuneInterventionInvestigationLabelLearning ModuleLightMacacaMachine LearningMetabolicModelingModificationMonkeysMusMuscleNeurodegenerative DisordersNeuronsNoiseOpticsPerformancePhasePhysiologicalPhysiologyPlayPolysomnographyProcessQualifyingREM SleepRadioRattusResearchRodentRoleRunningScientistSensorySignal TransductionSiliconSleepSleep ArchitectureSleep DisordersSleep StagesSpecificitySystemTechniquesTechnologyTestingTimeWakefulnessWeightalgorithm traininganalogcognitive benefitsdata acquisitiondata exchangedata reductiondesigndigitalenergy efficiencyexperienceexperimental studyfree behaviorhypocretinimprovedin vivoin vivo evaluationindustry partnerlong term memorymicroelectronicsmicrosystemsminiaturizemultimodalityneuralneural circuitneurotransmissionnew technologynon rapid eye movementnonhuman primatenoradrenergicnovel therapeutic interventionnovel therapeuticsoperationoptogeneticspreventrapid eye movementsleep behaviorsleep regulationwirelesswireless communicationwireless electronic
项目摘要
PROJECT SUMMARY
Sleep plays a critical role in a vast array of physiological and pathophysiological processes, including executive
brain functions, immune and metabolic functions, and neurodegenerative diseases. An improved understanding
of sleep mechanisms is important to developing new treatment strategies. Sleep circuits can be manipulated
with numerous techniques to infer causal relationships to physiology and behavior. Effects of these
manipulations are generally sleep stage or brain state dependent. Thus, closed-loop interrogation provides a
powerful paradigm, whereby a temporally precise manipulation (optogenetic, electrical, or sensory stimulation)
is delivered in a brain-state dependent manner. This paradigm has been used successfully in mice and humans
tethered to data acquisition, state classification, and stimulation hardware. However, tethering can adversely
affect natural sleep behavior and prevents use in larger animal models. Here, we propose to develop a fully
integrated, wireless, sleep modulation system-on-chip (SoC) with the capability to deliver state-dependent,
temporally-precise optical, electrical, and auditory stimulation. In Aims 1 and 2, Co-PI Dr. Liu will iteratively
develop an ultra-low-power SoC for polysomnography (PSG) signal acquisition and multi-modal closed-loop
stimulation. The final SoC will have five modules: (1) a low-noise, high-precision PSG acquisition module, (2) a
programmable mixed-signal data compression module for energy efficiency, (3) a low-power ultra-wideband
wireless transmitter, (4) a machine learning-based sleep stage classification module, and (5) a fully
programmable multi-modal stimulator. Full integration of the system will result in a small (2 cm3), light (2 g)
battery-powered device able to operate continuously for over 10 h on a single charge. In Aim 3, running
concurrently with the first two aims, Co-PI Dr. Richardson will validate performance of the SoC with sleep studies
in both small (rats) and large (macaques) animal models. Interleaved recordings from the wireless SoC and a
tethered commercial system will assess fidelity of compressed PSG acquisition and the impact of tethering on
sleep architecture. Real-time 2-stage and all-stage classifiers will be compared to offline ground truth labels.
Finally, in-phase closed-loop auditory stimulation will be used to enhance slow wave activity. Our team is
uniquely qualified for this proposal since we have extensive experience developing the key modules in the
proposed SoC and using wireless electronics for free behavior electrophysiological experiments in both animal
models. Once developed, two industry partners, CMC Microsystems and Open Ephys, Inc., will facilitate
distribution of the SoC to the worldwide community. The closed-loop SoC will enable unprecedented hypothesis-
driven research on sleep-stage specific neural circuits and interventions in models spanning from mice to
monkeys, thereby accelerating the mechanistic understanding of sleep and treatment of sleep disorders.
项目概要
睡眠在一系列生理和病理生理过程中发挥着至关重要的作用,包括执行
脑功能、免疫和代谢功能以及神经退行性疾病。更好的理解
睡眠机制的研究对于制定新的治疗策略非常重要。睡眠电路可以被操纵
使用多种技术来推断生理和行为的因果关系。这些的影响
操作通常取决于睡眠阶段或大脑状态。因此,闭环询问提供了
强大的范例,通过时间精确的操纵(光遗传学、电学或感觉刺激)
以依赖于大脑状态的方式传递。该范例已成功应用于小鼠和人类
与数据采集、状态分类和刺激硬件相关。然而,网络共享可能会产生不利影响
影响自然睡眠行为并妨碍在大型动物模型中使用。在此,我们建议开发一个完整的
集成、无线、睡眠调制片上系统 (SoC),能够提供状态相关、
时间精确的光学、电学和听觉刺激。在目标 1 和 2 中,联合 PI 刘博士将迭代
开发用于多导睡眠图 (PSG) 信号采集和多模态闭环的超低功耗 SoC
刺激。最终的 SoC 将具有五个模块:(1) 低噪声、高精度 PSG 采集模块,(2)
用于提高能效的可编程混合信号数据压缩模块,(3) 低功耗超宽带
无线发射器,(4)基于机器学习的睡眠阶段分类模块,以及(5)完全
可编程多模式刺激器。系统的完全集成将导致体积小(2 cm3)、重量轻(2 g)
电池供电的设备一次充电可连续运行 10 小时以上。在目标 3 中,跑步
在实现前两个目标的同时,联合 PI Richardson 博士将通过睡眠研究验证 SoC 的性能
在小型(大鼠)和大型(猕猴)动物模型中。来自无线 SoC 的交错录音和
系留商业系统将评估压缩 PSG 采集的保真度以及系留对
睡眠架构。实时两阶段和全阶段分类器将与离线地面实况标签进行比较。
最后,同相闭环听觉刺激将用于增强慢波活动。我们的团队是
由于我们在开发关键模块方面拥有丰富的经验,因此我们具有独特的资格来胜任该提案
提出的 SoC 并使用无线电子技术在两种动物中进行自由行为电生理实验
模型。一旦开发完成,两个行业合作伙伴 CMC Microsystems 和 Open Ephys, Inc. 将促进
向全球社区分发 SoC。闭环 SoC 将实现前所未有的假设——
推动了对睡眠阶段特定神经回路的研究以及从小鼠到模型的干预
猴子,从而加速对睡眠机制的理解和睡眠障碍的治疗。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design of a Sleep Modulation System with FPGA-Accelerated Deep Learning for Closed-loop Stage-Specific In-Phase Auditory Stimulation.
采用 FPGA 加速深度学习的睡眠调制系统设计,用于闭环特定阶段同相听觉刺激。
- DOI:10.1109/iscas46773.2023.10181356
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Sun,Mingzhe;Zhou,Aaron;Yang,Naize;Xu,Yaqian;Hou,Yuhan;Richardson,AndrewG;Liu,Xilin
- 通讯作者:Liu,Xilin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xilin Liu其他文献
Xilin Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
成骨细胞的听觉感应
- 批准号:31570943
- 批准年份:2015
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 46.24万 - 项目类别:
Targeting the Auditory Control Network with Auditory Control Enhancement (ACE) in Schizophrenia
通过听觉控制增强 (ACE) 治疗精神分裂症的听觉控制网络
- 批准号:
10593386 - 财政年份:2023
- 资助金额:
$ 46.24万 - 项目类别:
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 46.24万 - 项目类别:
Characterizing Sleep Signatures and its effects on Cognition in New-Onset Temporal Lobe Epilepsy
新发颞叶癫痫的睡眠特征及其对认知的影响
- 批准号:
10644795 - 财政年份:2023
- 资助金额:
$ 46.24万 - 项目类别:
Intraoperative Identification of Cranial Nerves in Skull Base Surgery Using Polarization Sensitive Optical Coherence Tomography
使用偏振敏感光学相干断层扫描术中识别颅底手术中的脑神经
- 批准号:
10662675 - 财政年份:2023
- 资助金额:
$ 46.24万 - 项目类别: