Core 1: Cellular diagnostics/imaging core
核心1:细胞诊断/成像核心
基本信息
- 批准号:10238046
- 负责人:
- 金额:$ 35.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnimalsAtherosclerosisBlood CirculationBlood VesselsBlood flowBlood specimenBone MarrowCardiovascular DiseasesCellsCollaborationsColorCommunicationCustomData AnalysesDetectionDevelopmentDiagnostic ImagingEndotheliumExtracellular MatrixFluorescenceFunctional ImagingFutureGenesGenome engineeringHeartHematopoiesisHematopoieticHematopoietic stem cellsImageImaging technologyLaboratoriesLasersLesionLeukocyte TraffickingLeukocytesMeasurementMeasuresMethodsMicrodissectionMissionMolecularMolecular AnalysisMolecular ProfilingMusOpticsPeripheralPopulationProductionProteinsProtocols documentationResearch PersonnelResourcesScientific Advances and AccomplishmentsSignal TransductionTechniquesTechnologyTimeTissuesVascular Endothelial CellVascular PermeabilitiesWorkbasebone cellbone imagingcardiovascular effectscell typedesignhematopoietic stem cell nicheimage guidedimage processingimaging capabilitiesimaging modalityin vivoinnovationinstrumentationintravital microscopymeetingsmembermigrationmultiphoton imagingnon-invasive monitorreceptorsecond harmonicsingle cell analysistool
项目摘要
The mission of the cellular diagnostics/imaging core is two fold. First, we will provide state-of-the art imaging
technology and cell analysis tools to meet the scientific needs of the four projects in this PPG. We will work
closely with project investigators to perform quantitative measurements and data analysis, customizing
instrumentation and optimizing experimental protocols as necessary. Second, we will pursue new technical
innovations that will lead to future scientific advances beyond what can be accomplished with existing
technologies. The Core is a unique resource with deep expertise in optical technology, intravital microscopy,
instrumentation design and fabrication, as well as image processing and data analysis. We also have a
record of productive collaborations with multiple investigators in this PPG, including Dr. Scadden (Project 1),
Dr. Nahrendorf (Project 2), and Dr. Swirski (Project 3). Our laboratories are all physically co-located in the
same building, making the Core a common meeting place where team members from various laboratories
converge, not just to use the facility but also to interact and exchange ideas. To carry out the mission of the
Core, we propose the following Specific Aims. In Aim 1, we will work with Projects 1 and 4 to perform clonal
analysis of hematopoietic cells based on their expression of multi-color fluorescent proteins. We will expand
the multi-color capability of our in vivo flow cytometer, a technology developed in our laboratory for real-time
detection and quantification of fluorescent cells in the circulation of live animals without the need to draw
blood samples, to enable noninvasive monitoring of the clonal dynamics in the peripheral circulating
leukocyte population. In Aim 2, we will work with Project 2 to assess how the bone marrow (BM) vasculature
is altered by cardiovascular diseases (CVD). We will measure functional parameters such as blood flow,
vascular permeability, vascular reactivity, and trans-endothelial migration, by performing multiphoton
imaging of the BM vasculature together with second-harmonic imaging of the extracellular matrix
component. We will also work with Project 3 to characterize hematopoietic stem cell (HSC) localization and
dynamics in the BM in the settings of MI and atherosclerosis using gene-edited HSCs provided by the
Genome Engineering Core. In Aim 3 we propose to develop a new method to enable image-guided laser
microdissection and extraction of live cells from the BM for single cell molecular profiling. We will initially
focus on capturing BM vascular endothelial cells, as they form a critical component of the HSC niche and
also regulate leukocyte trafficking and macromolecular transport. The technique will bridge the existing
divide between single-cell analysis on the one hand, which provides molecular but no spatial information,
and live imaging on the other, which supplies the 3D spatial context lacking in the molecular analysis. The
technique can be extended in future studies to the analysis of other cell types and in other tissues.
细胞诊断/成像核心的任务是两个倍。首先,我们将提供最先进的成像
技术和细胞分析工具可以满足本ppg中四个项目的科学需求。我们将工作
与项目调查人员紧密进行定量测量和数据分析,自定义
必要的仪器和优化实验协议。第二,我们将追求新的技术
创新将导致未来的科学进步,而不是现有的创新
技术。核心是一种独特的资源,具有光学技术,插入显微镜,
仪器设计和制造以及图像处理和数据分析。我们也有一个
与该PPG的多个研究人员的生产合作记录,包括Scadden博士(项目1),
Nahrendorf博士(项目2)和Swirski博士(项目3)。我们的实验室在物理上都在
同一建筑物,使核心成为各个实验室团队成员的共同聚会场所
融合,不仅是为了使用设施,还可以互动和交换想法。执行任务
核心,我们提出以下特定目标。在AIM 1中,我们将与项目1和4合作执行克隆
造血细胞基于其多色荧光蛋白的表达分析。我们将扩展
我们的体内流式细胞仪的多色能力,这是我们实验室实时开发的一项技术
在无需绘制的无需画
血液样本,以实现外围循环中克隆动力学的无创监测
白细胞种群。在AIM 2中,我们将与项目2合作评估骨髓(BM)脉管系统如何
通过心血管疾病(CVD)改变。我们将测量功能参数,例如血流,
血管通透性,血管反应性和跨内皮迁移,通过执行多光子
BM脉管系统的成像以及细胞外基质的第二次谐波成像
成分。我们还将与项目3合作,以表征造血干细胞(HSC)定位和
BM在MI和动脉粥样硬化的设置中使用基因编辑的HSC的动力学
基因组工程核心。在AIM 3中,我们建议开发一种新方法来启用图像引导激光器
从BM中进行微分解和提取单细胞分子分析。我们最初会
专注于捕获BM血管内皮细胞,因为它们构成了HSC生态位的关键组成部分
还调节白细胞运输和大分子运输。该技术将桥接现有的
一方面对单细胞分析进行划分,该分析提供分子但没有空间信息,
并在另一个上进行实时成像,该成像提供了分子分析中缺乏的3D空间环境。这
在将来的研究中可以扩展技术,以分析其他细胞类型和其他组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles P. Lin其他文献
Deep tissue single cell MSC ablation using a fiber laser source to evaluate therapeutic potential in osteogenesis imperfecta
使用光纤激光源进行深部组织单细胞 MSC 消融评估成骨不全症的治疗潜力
- DOI:
10.1117/12.2213292 - 发表时间:
2016 - 期刊:
- 影响因子:4.3
- 作者:
K. Tehrani;Emily G Pendleton;Charles P. Lin;L. Mortensen - 通讯作者:
L. Mortensen
Computational modeling of stress transient and bubble evolution in short-pulse laser-irradiated melanosome particles
短脉冲激光照射黑素体颗粒中应力瞬态和气泡演化的计算模型
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
M. Strauss;P. Amendt;R. London;D. Maitland;M. Glinsky;Charles P. Lin;Michael W. Kelly - 通讯作者:
Michael W. Kelly
A Sensorless Adaptive Optics Scanning Laser Ophthalmoscope for Mice
用于小鼠的无传感器自适应光学扫描激光检眼镜
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
D. Biss;R. Webb;Yaopeng Zhou;T. Bifano;Charles P. Lin - 通讯作者:
Charles P. Lin
Declined presentation inflammatory modulation of hematopoietic stromal niche cells by TNF-α leads to rapid mobilization of hematopoietic stem/progenitor cells (HSPC) and neutrophils
- DOI:
10.1016/j.exphem.2015.06.134 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Shin-Young Park;Eun Young Anna Han;Yookyung Jung;Charles P. Lin;Leslie E. Silberstein - 通讯作者:
Leslie E. Silberstein
Interpretation of the nitrogen spin densities in the primary donor cation of photosynthetic reaction centers
光合反应中心主要供体阳离子中氮自旋密度的解释
- DOI:
- 发表时间:
1986 - 期刊:
- 影响因子:0
- 作者:
Charles P. Lin;J. Norris - 通讯作者:
J. Norris
Charles P. Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles P. Lin', 18)}}的其他基金
Local Skull Marrow Sensing and Response to CNS Inflammation
局部颅骨对中枢神经系统炎症的感知和反应
- 批准号:
10654045 - 财政年份:2022
- 资助金额:
$ 35.86万 - 项目类别:
(PQC2) Localization as a determinant of cancer dormancy
(PQC2) 定位作为癌症休眠的决定因素
- 批准号:
8876904 - 财政年份:2015
- 资助金额:
$ 35.86万 - 项目类别:
(PQC2) Localization as a determinant of cancer dormancy
(PQC2) 定位作为癌症休眠的决定因素
- 批准号:
9262173 - 财政年份:2015
- 资助金额:
$ 35.86万 - 项目类别:
Multi-wavelength femtosecond laser sources for intravital multiphoton microscopy
用于活体多光子显微镜的多波长飞秒激光源
- 批准号:
8562082 - 财政年份:2013
- 资助金额:
$ 35.86万 - 项目类别:
Multi-wavelength femtosecond laser sources for intravital multiphoton microscopy
用于活体多光子显微镜的多波长飞秒激光源
- 批准号:
8852123 - 财政年份:2013
- 资助金额:
$ 35.86万 - 项目类别:
Multi-wavelength femtosecond laser sources for intravital multiphoton microscopy
用于活体多光子显微镜的多波长飞秒激光源
- 批准号:
9087255 - 财政年份:2013
- 资助金额:
$ 35.86万 - 项目类别:
Multi-wavelength femtosecond laser sources for intravital multiphoton microscopy
用于活体多光子显微镜的多波长飞秒激光源
- 批准号:
8701293 - 财政年份:2013
- 资助金额:
$ 35.86万 - 项目类别:
相似国自然基金
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
ω-3多不饱和脂肪酸对2型糖尿病人群和模型动物高密度脂蛋白亚组分和动脉粥样硬化影响及机制研究
- 批准号:81872618
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于冠状动脉粥样硬化的小鼠冠心病模型构建及其人源化方法
- 批准号:81770444
- 批准年份:2017
- 资助金额:83.0 万元
- 项目类别:面上项目
危重血管性疾病血栓事件的发生 、发展及干预研究
- 批准号:91739302
- 批准年份:2017
- 资助金额:210.0 万元
- 项目类别:重大研究计划
基于TLR4信号通路在动脉粥样硬化炎症过程中的调控机制研究
- 批准号:31572347
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
相似海外基金
MagPAD: Magnetic Puncture, Access, and Delivery of Large Bore Devices to the Heart Via the Venous System
MagPAD:通过静脉系统对大口径装置进行磁穿刺、进入和输送至心脏
- 批准号:
10600737 - 财政年份:2023
- 资助金额:
$ 35.86万 - 项目类别:
Visualsonics Vevo 3100 Ultrasound Imaging
Visualsonics Vevo 3100 超声成像
- 批准号:
10417498 - 财政年份:2022
- 资助金额:
$ 35.86万 - 项目类别:
Mapping, modeling, and manipulating 3D contacts in vascular cells to connect risk variants to disease genes
绘制、建模和操作血管细胞中的 3D 接触,将风险变异与疾病基因联系起来
- 批准号:
10446856 - 财政年份:2022
- 资助金额:
$ 35.86万 - 项目类别:
Mechanistic bases of vessel diameter regulation by Plexind1 - Resubmission
Plexind1 调节血管直径的机制基础 - 重新提交
- 批准号:
10522665 - 财政年份:2022
- 资助金额:
$ 35.86万 - 项目类别:
Mechanistic bases of vessel diameter regulation by Plexind1 - Resubmission
Plexind1 调节血管直径的机制基础 - 重新提交
- 批准号:
10662561 - 财政年份:2022
- 资助金额:
$ 35.86万 - 项目类别: