QUANTITATIVE IMAGE ANALYSIS TECHNIQUES FOR STUDIES OF AGING PHENOTYPES AND AGE-RELATED DISEASES
用于研究衰老表型和年龄相关疾病的定量图像分析技术
基本信息
- 批准号:8854343
- 负责人:
- 金额:$ 6.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-02 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAddressAdipose tissueAffectAgeAgingAging-Related ProcessAlgorithmsAnatomyBiological MarkersBody CompositionCardiovascular DiseasesClinicalClinical TrialsComputational TechniqueDataData AnalysesDelawareDescriptorDevelopmentDiabetes MellitusDiagnosisDiseaseDoctor of MedicineDoctor of PhilosophyEarly DiagnosisEpidemicEpidemiologyFatty acid glycerol estersFoundationsGerontologyGoalsHuman bodyImageImage AnalysisImaging technologyIndividualInterventionLeadLinkLongitudinal StudiesLower ExtremityMRI ScansMachine LearningMagnetic Resonance ImagingMedical ImagingMetabolic DiseasesMetabolic syndromeMethodsMorphologyMuscleMusculoskeletal DiseasesNoiseNon-Insulin-Dependent Diabetes MellitusParticipantPathologyPatternPennsylvaniaPhenotypePlayPreventionProceduresQuality of lifeResearchRoleSkeletal MuscleTechniquesThigh structureTissuesUnderrepresented MinorityUnited States National Institutes of HealthWorkX-Ray Computed Tomographyage relatedbiophysical modelboneeffective therapygraduate studentimage processingimage registrationin vivointerestlongitudinal analysismorphometrymuscle formmuscle strengthnoveloutcome forecastprognosticpublic health relevancequantitative imagingsarcopeniastatisticstoolundergraduate student
项目摘要
DESCRIPTION (provided by applicant): Tissue identification and quantification plays a significant role in the study of aging and age-related diseases. For example, the accumulation of fat in the human body and its regional distribution with aging is associated with type 2 diabetes and cardiovascular diseases. Changes in muscle composition are strongly linked to decline of muscle strength, decreased mobility caused by aging, or musculoskeletal disorders. Especially interesting is analysis of longitudinal changes of morphometric descriptors that is significant for
studying the aging process and for the diagnosis and prevention of age-related diseases. Medical imaging has emerged as a major tool for estimation of body composition mainly due to being non- invasive and producing multi-dimensional information. Nowadays MRI and CT acquisition is a central component of clinical trials. An abundance of imaging data is collected, but this wealth of information has not been utilized to full extent. Therefore research on image analysis techniques for tissue quantification that are reproducible and can be used on large-scale clinical trials is of particular importance. The technical hypothesis of this work is that quantitative image processing can robustly and accurately segment, register, and fuse body composition data from modern MRI and CT imaging. The central hypothesis of this proposal is that qualitative body composition phenotypes on clinical imaging will differentiate individuals who are healthy versus those who are not. The goal of our work is to provide a foundation for image analysis of the abdomen and lower extremities and to study the relationship between body morphological changes and age-related pathologies. We will build upon recent advances in medical image computing to segment muscle, regional adipose tissue, and bone in clinical CT and MRI scans. We will also develop image registration procedures to achieve intra- and inter-subject correspondence and make efficient use of information provided by multi-modal and multi-temporal imaging data collected in clinical trials (aim 1). After these methods have been developed, we will address the hypothesis that quantitative use of clinical imaging can increase the prognostic accuracy of age-related pathologies (aim2).
描述(由应用提供):组织识别和定量在衰老和与年龄有关的疾病的研究中起重要作用。例如,人体中脂肪的积累及其随老化的区域分布与2型糖尿病和心血管疾病有关。肌肉组成的变化与肌肉力量的下降密切相关,衰老或肌肉骨骼疾病引起的迁移率降低。特别有趣的是分析形态描述符的纵向变化,这对于
研究衰老过程以及诊断和预防与年龄有关的疾病。医学成像已成为估计身体成分的主要工具,主要是由于无创和产生多维信息。如今,MRI和CT获取是临床试验的核心组成部分。收集了成像数据的抽象,但是这些信息尚未完全使用。因此,可重现的组织定量图像分析技术的研究尤其重要。这项工作的技术假设是,定量图像处理可以从现代MRI和CT成像中进行稳健,准确的细分,注册和融合身体组成数据。该提议的中心假设是,临床成像的定性身体组成表型将使健康的个体与没有的人区分开。我们还将开发图像注册程序以实现内部和受试者间的对应关系,并有效利用由临床试验收集的多模式和多时间成像数据提供的信息(AIM 1)。开发了这些方法后,我们将解决以下假设:临床成像的定量使用可以提高与年龄相关的病理的预后准确性(AIM2)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sokratis Makrogiannis其他文献
Sokratis Makrogiannis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sokratis Makrogiannis', 18)}}的其他基金
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 6.34万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10556825 - 财政年份:2022
- 资助金额:
$ 6.34万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10893258 - 财政年份:2022
- 资助金额:
$ 6.34万 - 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
- 批准号:
10663229 - 财政年份:2015
- 资助金额:
$ 6.34万 - 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
- 批准号:
10465018 - 财政年份:2015
- 资助金额:
$ 6.34万 - 项目类别:
QUANTITATIVE IMAGE ANALYSIS TECHNIQUES FOR STUDIES OF AGING PHENOTYPES AND AGE-RELATED DISEASES
用于研究衰老表型和年龄相关疾病的定量图像分析技术
- 批准号:
9044803 - 财政年份:2015
- 资助金额:
$ 6.34万 - 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
- 批准号:
10089865 - 财政年份:2015
- 资助金额:
$ 6.34万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
Multi-omics for obesity-associated liver disease discovery in Hispanics/Latinos: the Cameron County Hispanic Cohort
西班牙裔/拉丁裔肥胖相关肝病发现的多组学:卡梅伦县西班牙裔队列
- 批准号:
10744625 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
Exosomes and insulin action in metabolically healthy and unhealthy obesity
外泌体和胰岛素在代谢健康和不健康肥胖中的作用
- 批准号:
10721302 - 财政年份:2023
- 资助金额:
$ 6.34万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 6.34万 - 项目类别:
Synergistic effect of maternal insulin-resistance and cortisol in pregnancy on fetal programming of child mitochondrial function and obesity risk
妊娠期母体胰岛素抵抗和皮质醇对胎儿线粒体功能和肥胖风险的协同作用
- 批准号:
10628030 - 财政年份:2022
- 资助金额:
$ 6.34万 - 项目类别: