Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
基本信息
- 批准号:10465018
- 负责人:
- 金额:$ 10.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-02 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAddressAdipose tissueAdultAffectAgeAgingAgreementAnatomyAreaAtlasesBaltimoreBiological MarkersBody CompositionBone structureCardiovascular DiseasesClassificationClinicalClinical DataComputational TechniqueComputer AssistedCoronary ArteriosclerosisCross-Sectional StudiesDataData SetDescriptorDeteriorationDevelopmentDiabetes MellitusDiagnosisDiagnosticDictionaryDiseaseDoctor of MedicineDoctor of PhilosophyEndocrinologyEpidemicEpidemiologyGerontologyHumanHuman bodyImageImage AnalysisImaging technologyInterventionLeadLegLinkLongitudinal StudiesMagnetic Resonance ImagingMeasuresMedicalMedical ImagingMetabolicMetabolic DiseasesMetabolic syndromeMethodsModernizationMonitorMorphologic artifactsMorphologyMuscleNoiseNon-Insulin-Dependent Diabetes MellitusNormal tissue morphologyObesityOrganOsteoporosisParticipantPathologyPatternPennsylvaniaPersonsPharmacologyPhenotypePhysicsPhysiologicalPopulation StudyPrevalencePrincipal InvestigatorProcessPrognosisPropertyQuality of lifeResearchRiskRisk FactorsShapesSkeletal MuscleStrokeTechniquesTestingTherapeutic InterventionThigh structureTimeTissue ModelTissuesUnited StatesUnited States National Institutes of HealthVisualizationWorkX-Ray Computed Tomographyage relatedautomated image analysisbaseclinical imagingdeep learningdisease diagnosticdisorder riskepidemiology studyfracture riskimaging biomarkerimaging modalityimaging studyin vivointerestintervention effectlearning strategylongitudinal analysismachine learning methodmathematical methodsmedical schoolsmetabolic abnormality assessmentmodels and simulationmorphometrymuscle formmuscle strengthnovelpandemic diseasepre-clinicalpredictive testprognosis biomarkerprogramsquantitative imagingradiological imagingsarcopeniasimulationstatistical and machine learningstatistical learningsubstantia spongiosaultrasoundvirtual
项目摘要
Program Director/Principal Investigator (Last, First, Middle): Makrogiannis, Sokratis, Ph.D.
Abstract
Age-related and metabolic diseases such as type-2 diabetes, cardiovascular diseases, and sarcopenia have
become a worldwide epidemic that affects the quality of life of millions. To give a global perspective, roughly
343.8 million people in the world have type-2 diabetes today, and 175 million do not know they have diabetes at
all. Metabolic diseases, such as diabetes and osteoporosis, are strongly linked to longitudinal changes in body
composition, morphology and function.
Modern medical imaging technologies offer the opportunity to study the composition and morphometry of
human body in ways that were previously impossible. Contemporary imaging studies that are performed in vivo
on a large number of participants have enabled cross-sectional and longitudinal studies of age-related and
metabolic diseases, and effects of pharmacological interventions. The emergence of advanced imaging
technologies has also created the need for automated image analysis techniques for identification and
quantification of morphological patterns of anatomies and tissues and their changes with increasing age.
This project will contribute novel and non-invasive medical image analysis techniques for studying the human
body composition to achieve timely prognosis of these pathologies. Our research interests will concentrate on
identification of morphological patterns in the mid-thigh, abdomen and lower leg that will eventually lead to
development of imaging biomarkers. The accumulation of adipose tissue in the human body and changes of its
regional distribution are associated with type-2 diabetes, cardiovascular diseases and the metabolic syndrome.
Age-related changes in skeletal muscle composition are strongly linked to loss in muscle strength and mass,
frequently termed as sarcopenia, leading to decreased mobility and function. Also, trabecular bone structural
changes are associated with osteoporosis. We will use imaging and clinical data collected by the Baltimore
Longitudinal Study of Aging (BLSA) that is the longest ongoing epidemiology study in the US.
This work will address a technical and a clinical hypothesis. The technical hypothesis is that quantitative
image analysis can accurately and robustly segment, register and fuse body composition data acquired by
modern MRI and CT imaging scanners. The clinical hypothesis is that qualitative body composition phenotypes
on clinical imaging can be used as biomarkers for prognosis and diagnosis of the metabolic syndrome
manifestations. We will build on recent advances in medical image analysis to contribute novel and non-invasive
techniques for studying the human body composition and its longitudinal changes with main applications in tissue
identification and quantification at the mid-thigh, lower leg and the abdomen (aim 1). Then we will develop
statistical machine learning methods to achieve timely diagnosis and prognosis of metabolic and age-related
conditions including the metabolic syndrome and osteoporosis, and to track the effect of interventions (aim 2).
OMB No. 0925-0001/0002 (Rev. 08/12 Approved Through 8/31/2015)Page Continuation Format Page
项目总监/首席研究员(最后、第一、中间):Makrogiannis, Sokratis, Ph.D.
抽象的
2 型糖尿病、心血管疾病和肌肉减少症等与年龄相关的代谢性疾病
成为影响数百万人生活质量的世界性流行病。为了提供全球视野,大致
当今世界有 3.438 亿人患有 2 型糖尿病,而 1.75 亿人在当时并不知道自己患有糖尿病。
全部。代谢疾病,如糖尿病和骨质疏松症,与身体的纵向变化密切相关
组成、形态和功能。
现代医学成像技术提供了研究物质组成和形态测量的机会
以以前不可能的方式改变人体。在体内进行的当代成像研究
对大量参与者的研究使得能够对与年龄相关的和
代谢疾病以及药物干预的影响。先进成像技术的出现
技术还产生了对自动图像分析技术的需求,用于识别和
解剖学和组织的形态模式及其随年龄增长的变化的量化。
该项目将为研究人类提供新颖的非侵入性医学图像分析技术
身体成分以实现这些病理的及时预后。我们的研究兴趣将集中于
识别大腿中部、腹部和小腿的形态模式,最终导致
成像生物标志物的开发。人体内脂肪组织的积累及其变化
区域分布与2型糖尿病、心血管疾病和代谢综合征有关。
骨骼肌成分与年龄相关的变化与肌肉力量和质量的损失密切相关,
通常被称为肌肉减少症,导致活动能力和功能下降。另外,骨小梁结构
变化与骨质疏松症有关。我们将使用巴尔的摩收集的影像和临床数据
老龄化纵向研究(BLSA)是美国持续时间最长的流行病学研究。
这项工作将解决技术和临床假设。技术假设是定量的
图像分析可以准确、稳健地分割、注册和融合通过以下方式获取的身体成分数据:
现代 MRI 和 CT 成像扫描仪。临床假设是定性的身体成分表型
临床影像学可作为代谢综合征预后和诊断的生物标志物
表现形式。我们将利用医学图像分析的最新进展,贡献新颖且非侵入性的技术
研究人体成分及其纵向变化的技术,主要应用于组织
大腿中部、小腿和腹部的识别和量化(目标 1)。然后我们就开发
统计机器学习方法实现代谢和年龄相关疾病的及时诊断和预后
包括代谢综合征和骨质疏松症在内的疾病,并跟踪干预措施的效果(目标 2)。
OMB 编号 0925-0001/0002(修订版 08/12 批准至 8/31/2015)页面延续格式页面
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sokratis Makrogiannis其他文献
Sokratis Makrogiannis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sokratis Makrogiannis', 18)}}的其他基金
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10556825 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10893258 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
QUANTITATIVE IMAGE ANALYSIS TECHNIQUES FOR STUDIES OF AGING PHENOTYPES AND AGE-RELATED DISEASES
用于研究衰老表型和年龄相关疾病的定量图像分析技术
- 批准号:
8854343 - 财政年份:2015
- 资助金额:
$ 10.95万 - 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
- 批准号:
10663229 - 财政年份:2015
- 资助金额:
$ 10.95万 - 项目类别:
QUANTITATIVE IMAGE ANALYSIS TECHNIQUES FOR STUDIES OF AGING PHENOTYPES AND AGE-RELATED DISEASES
用于研究衰老表型和年龄相关疾病的定量图像分析技术
- 批准号:
9044803 - 财政年份:2015
- 资助金额:
$ 10.95万 - 项目类别:
Image Analysis and Machine Learning Methods for Biomarkers of Age-related and Metabolic Diseases
年龄相关疾病和代谢疾病生物标志物的图像分析和机器学习方法
- 批准号:
10089865 - 财政年份:2015
- 资助金额:
$ 10.95万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 10.95万 - 项目类别:
Multi-omics for obesity-associated liver disease discovery in Hispanics/Latinos: the Cameron County Hispanic Cohort
西班牙裔/拉丁裔肥胖相关肝病发现的多组学:卡梅伦县西班牙裔队列
- 批准号:
10744625 - 财政年份:2023
- 资助金额:
$ 10.95万 - 项目类别:
Exosomes and insulin action in metabolically healthy and unhealthy obesity
外泌体和胰岛素在代谢健康和不健康肥胖中的作用
- 批准号:
10721302 - 财政年份:2023
- 资助金额:
$ 10.95万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别:
Synergistic effect of maternal insulin-resistance and cortisol in pregnancy on fetal programming of child mitochondrial function and obesity risk
妊娠期母体胰岛素抵抗和皮质醇对胎儿线粒体功能和肥胖风险的协同作用
- 批准号:
10628030 - 财政年份:2022
- 资助金额:
$ 10.95万 - 项目类别: