Early diagnosis of colon cancer with computer-aided multi-energy CT colonography

计算机辅助多能CT结肠成像早期诊断结肠癌

基本信息

  • 批准号:
    8621760
  • 负责人:
  • 金额:
    $ 8.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-02-11 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Colon cancer, the second leading cause of cancer deaths for men and women in the United States, is preventable if precursor colonic lesions are detected and removed. Computed tomographic colonography (CTC), also known as virtual colonoscopy (VC), could substantially increase the capacity, safety, and patient compliance of colorectal examinations. CTC has been endorsed as a viable option for colorectal cancer screening by the recent guidelines of the American Cancer Society, U.S. Multi-Society Task Force, and the American College of Radiology. Laxative-free fecal-tagging CTC assisted by computer-aided detection (CAD) is an emerging CTC technique for eliminating of laxative agents or diarrhea-inducing high-osmolar contrast agents from bowel cleansing. A recent large-scale multi-center clinical trial suggests that the combination of laxative-free preparation with ingestion of oral contrast agent and CAD is feasible in making CTC examinations easy for patients to tolerate while detecting polyps e10 mm in size at sensitivity comparable to that of optical colonoscopy (OC). However, non-polypoid flat lesions and small polyps (6-9 mm in size) represent a significant source of false-negative studies. Thus the goal of this project is to develop a novel CAD scheme based on meCTC, denoted as a multi-energy CAD (meCAD) scheme, which overcomes the limitations of the CAD schemes based on single-energy CTC. We hypothesize that the meCAD scheme will (1) yield a high performance in the detection of both polypoid and non-polypoid colorectal lesions comparable to OC, and (2) improve radiologists' performance in the detection of clinically significant colorectal lesions in laxative free meCTC images at an ultra-low-dose. Our specific aims are (1) Establish a clinical ultra-low-dose meCTC image database for development and evaluation of a meCAD scheme; (2) Develop a novel meCAD scheme that effectively detects colorectal lesions in ultra-low-dose laxative-free meCTC images; (3) Evaluate clinical benefit of the meCAD scheme. Successful development and validation of the meCAD scheme will provide radiologists with an accurate and reliable non-invasive CTC screening scheme for early detection and diagnosis of colorectal lesions to prevent the occurrence of colorectal cancer.
描述(由申请人提供):如果检测并去除前体结肠病变,可以预防结肠癌,是美国男性和女性癌症死亡的第二大原因。计算机断层扫描(CTC),也称为虚拟结肠镜检查(VC),可以大大提高结直肠检查的能力,安全性和患者依从性。美国癌症学会,美国多社会工作队和美国放射学院的最新指南对结直肠癌筛查的可行选择已被认可。由计算机辅助检测(CAD)辅助的无液压粪便标记CTC是一种新兴的CTC技术,用于消除从肠清洁中消除泻药或腹泻诱导的高渗透对比剂的腹泻剂。最近的一项大规模多中心临床试验表明,无泻药制剂与摄入口服造影剂和CAD的组合可以使患者易于耐受性CTC检查,同时易于检测息肉E10 mm,同时可与光学上的息肉相比(OC)。但是,非型扁平病变和小息肉(6-9毫米)代表了假阴性研究的重要来源。因此,该项目的目的是开发基于MECTC的新型CAD方案,称为多能CAD(MECAD)方案,该方案克服了基于单能CTC的CAD方案的局限性。我们假设MECAD方案将(1)在检测与OC相当的息肉样和非型型结肠直肠损伤时产生高性能,(2)在检测泻药中临床上显着的结直肠病变时提高了放射科医生的表现。 在超低剂量下游离MECTC图像。我们的具体目的是(1)建立一个临床超低剂量MECTC图像数据库,以开发和评估MECAD方案; (2)开发一种新型的MECAD方案,该方案有效地检测到无剂量泻药MECTC图像中的结直肠病变; (3)评估MECAD计划的临床益处。 MECAD方案的成功开发和验证将为放射科医生提供准确,可靠的非侵入性CTC筛查方案,用于早期检测和诊断结直肠病变,以防止发生结直肠癌的发生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Janne Johannes Nappi其他文献

Janne Johannes Nappi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Janne Johannes Nappi', 18)}}的其他基金

Deep radiomic colon cleansing for laxative-free CT colonography
深度放射组学结肠清洗,用于无泻药 CT 结肠成像
  • 批准号:
    9297792
  • 财政年份:
    2017
  • 资助金额:
    $ 8.7万
  • 项目类别:
Deep-radiomics-learning for mass detection in CT colonography
用于 CT 结肠成像中质量检测的深度放射组学学习
  • 批准号:
    9167836
  • 财政年份:
    2016
  • 资助金额:
    $ 8.7万
  • 项目类别:
Deep-radiomics-learning for mass detection in CT colonography
用于 CT 结肠成像中质量检测的深度放射组学学习
  • 批准号:
    9316607
  • 财政年份:
    2016
  • 资助金额:
    $ 8.7万
  • 项目类别:
Early diagnosis of colon cancer with computer-aided multi-energy CT colonography
计算机辅助多能CT结肠成像早期诊断结肠癌
  • 批准号:
    8804248
  • 财政年份:
    2014
  • 资助金额:
    $ 8.7万
  • 项目类别:
In Vivo Detection of Flat Colorectal Neoplasms with CT Colonography
CT 结肠成像体内检测扁平结直肠肿瘤
  • 批准号:
    7712639
  • 财政年份:
    2009
  • 资助金额:
    $ 8.7万
  • 项目类别:

相似国自然基金

无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
  • 批准号:
    62371328
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
  • 批准号:
    62102232
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
  • 批准号:
    11701348
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
  • 批准号:
    61401294
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New EHR-based multimorbidity index for diverse populations across the lifespan: development, validation, and application
针对不同人群整个生命周期的新的基于 EHR 的多病指数:开发、验证和应用
  • 批准号:
    10720597
  • 财政年份:
    2023
  • 资助金额:
    $ 8.7万
  • 项目类别:
Classification of Stroke Etiology Using Advanced Computational Approaches
使用先进计算方法对中风病因进行分类
  • 批准号:
    10371559
  • 财政年份:
    2022
  • 资助金额:
    $ 8.7万
  • 项目类别:
Classification of Stroke Etiology Using Advanced Computational Approaches
使用先进计算方法对中风病因进行分类
  • 批准号:
    10542760
  • 财政年份:
    2022
  • 资助金额:
    $ 8.7万
  • 项目类别:
Improving Individualized Assessments of Glaucoma Progression with Population-Based Electronic Health Record Data
利用基于人群的电子健康记录数据改进青光眼进展的个体化评估
  • 批准号:
    10428149
  • 财政年份:
    2022
  • 资助金额:
    $ 8.7万
  • 项目类别:
The SKyRoCKeT Study: Surface-Knit and Reformulate CADENCE-Kids for Translation.
SKyRoCKeT 研究:表面编织和重新设计 CADENCE-Kids 以进行翻译。
  • 批准号:
    10443934
  • 财政年份:
    2022
  • 资助金额:
    $ 8.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了