Improving Individualized Assessments of Glaucoma Progression with Population-Based Electronic Health Record Data

利用基于人群的电子健康记录数据改进青光眼进展的个体化评估

基本信息

项目摘要

PROJECT SUMMARY Swarup S. Swaminathan, MD is an Assistant Professor of Ophthalmology at the Bascom Palmer Eye Institute with a career goal of becoming an independent clinician-scientist in the field of glaucoma clinical research. His overall research focus is to utilize novel statistical and data science methodologies to improve assessment of progression in glaucoma and early detection of those patients at greatest risk for irreversible vision loss. The primary objectives of this K23 career development proposal are: 1) to compare currently available methods used to monitor glaucomatous disease progression with higher-order Bayesian prediction models equipped with data from electronic health records (EHR), and 2) to provide an academic glaucoma specialist with the mentored research experience and formal training to conduct independent clinical research. Achieving these objectives will provide the critical skills required to establish an independent research program focused on applying data science principles to improve the clinical assessment of progression in glaucoma patients. The proposed K23 application will provide valuable mentorship and formal training in biostatistics, analysis of large databases containing longitudinal data, application of Bayesian statistics in the medical sciences, and artificial intelligence and machine learning data analysis. The extensive technical resources available at the Bascom Palmer Eye Institute and University of Miami Institute for Data Science & Computing, the mentorship and expertise of his advisory committee, and the dedicated institutional commitment will provide Dr. Swaminathan with the support needed to transition into an independent clinician-scientist. He will regularly meet with his mentors and advisors to discuss career development, attend pertinent university seminars and workshops, present ongoing research at national meetings, and consistently submit his work for publication. This proposal will test the hypothesis that EHR-equipped Bayesian models outperform ordinary least square (OLS) regression in accuracy and their ability to detect progression earlier. In Aim 1, Bayesian models equipped with EHR population-level imaging and functional data will be constructed to calculate the rate of change in optical coherence tomography and standard automated perimetry metrics of individual patients. In Aim 2, patient- specific risk factor data will be incorporated into Bayesian models to further refine these individualized predictions. These models will be compared to OLS regression, with the hypothesis that Bayesian models will be superior. Finally, in Aim 3, an interactive application will be developed to gather data from clinical practice in order to validate the use of Bayesian models in clinical care. An expert clinician panel will compare masked OLS and Bayesian estimates from these cases. The results of the proposed research will provide the foundation for an R01 grant examining the use of EHR data to improve clinical decision-making for the longitudinal care of glaucoma patients.
项目摘要 Swarup S. Swaminathan,医学博士是Bascom Palmer Eye Institute眼科助理教授 其职业目标是成为青光眼临床研究领域的独立临床医生科学家。他的 总体研究重点是利用新颖的统计和数据科学方法来改善评估的评估 青光眼的进展和早期发现那些具有不可逆转视力丧失风险的患者。这 该K23职业发展建议的主要目标是:1)比较当前可用的方法 用于监测配备高阶贝叶斯预测模型的青光眼疾病进展 带有来自电子健康记录(EHR)的数据,以及2)为学术青光眼专家提供 指导了研究经验和正式培训,以进行独立的临床研究。实现这些 目标将提供建立关注的独立研究计划所需的关键技能 应用数据科学原理来改善青光眼患者进展的临床评估。这 拟议的K23应用将在生物统计学中提供有价值的指导和正式培训,分析大型 包含纵向数据的数据库,医学科学中贝叶斯统计的应用以及人工 智能和机器学习数据分析。 BASCOM可用的广泛技术资源 帕尔默眼科研究所和迈阿密大学数据科学与计算研究所,指导和 他的咨询委员会的专业知识以及专门的机构承诺将为Swaminathan博士提供 在过渡到独立的临床医生科学家所需的支持。他会定期与他的 导师和顾问讨论职业发展,参加相关大学研讨会和讲习班, 在全国会议上进行了正在进行的研究,并始终提交他的作品出版。这个建议 将测试以EHR配备EHR模型的假设优于普通最小二乘(OLS)的假设 准确性的回归及其更早检测进展的能力。在AIM 1中,贝叶斯模型配备了 EHR种群级成像和功能数据将构建以计算光学的变化速率 单个患者的相干断层扫描和标准自动化指标。在AIM 2中,患者 - 特定的风险因素数据将纳入贝叶斯模型,以进一步完善这些个性化的 预测。这些模型将与OLS回归进行比较,假设贝叶斯模型将 要优越。最后,在AIM 3中,将开发一个交互式应用程序,以从临床实践中收集数据 为了验证贝叶斯模型在临床护理中的使用。专业的临床医生面板将比较蒙面 OLS和贝叶斯从这些情况下进行了估计。拟议研究的结果将为 R01赠款的基金会,检查使用EHR数据以改善临床决策的使用 青光眼患者的纵向护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Swarup Sai Swamina...的其他基金

Improving Individualized Assessments of Glaucoma Progression with Population-Based Electronic Health Record Data
利用基于人群的电子健康记录数据改进青光眼进展的个体化评估
  • 批准号:
    10630915
    10630915
  • 财政年份:
    2022
  • 资助金额:
    $ 22.68万
    $ 22.68万
  • 项目类别:

相似海外基金

Addressing Disparities in Pain Management among Veterans: A Decision Tool to Support Preference-Based Safe Prescribing and Treatment Decisions in Primary Care
解决退伍军人疼痛管理方面的差异:支持初级保健中基于偏好的安全处方和治疗决策的决策工具
  • 批准号:
    10640628
    10640628
  • 财政年份:
    2023
  • 资助金额:
    $ 22.68万
    $ 22.68万
  • 项目类别:
Howard University Clinical Research Network for Health Equity
霍华德大学健康公平临床研究网络
  • 批准号:
    10631693
    10631693
  • 财政年份:
    2022
  • 资助金额:
    $ 22.68万
    $ 22.68万
  • 项目类别:
Identifying Successful Strategies for Implementing Team-Based Home Blood Pressure Monitoring in Primary Care
确定在初级保健中实施基于团队的家庭血压监测的成功策略
  • 批准号:
    10701721
    10701721
  • 财政年份:
    2022
  • 资助金额:
    $ 22.68万
    $ 22.68万
  • 项目类别:
Integrating genomic and nongenomic risk for coronary artery disease
整合冠状动脉疾病的基因组和非基因组风险
  • 批准号:
    10681391
    10681391
  • 财政年份:
    2022
  • 资助金额:
    $ 22.68万
    $ 22.68万
  • 项目类别:
Identifying Successful Strategies for Implementing Team-Based Home Blood Pressure Monitoring in Primary Care
确定在初级保健中实施基于团队的家庭血压监测的成功策略
  • 批准号:
    10474081
    10474081
  • 财政年份:
    2022
  • 资助金额:
    $ 22.68万
    $ 22.68万
  • 项目类别: