Machine learning for the automated identification and tracking of rare myocardial diseases
用于自动识别和跟踪罕见心肌疾病的机器学习
基本信息
- 批准号:9739345
- 负责人:
- 金额:$ 68.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-05 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithm DesignAmyloidAmyloidosisArrhythmiaArtificial IntelligenceCardiacCardiomyopathiesCardiovascular systemCessation of lifeClinicalClinical TrialsClinics and HospitalsCohort StudiesCommunitiesComputer Vision SystemsCoronary heart diseaseDNA Sequence AlterationDataDepositionDetectionDevelopmentDiagnosisDiseaseDisease ProgressionEarly DiagnosisEchocardiographyFaceGeneral PopulationGoalsHeart DiseasesHeart failureHospitalizationHumanHypertensionHypertrophic CardiomyopathyImageImage AnalysisIndividualInformation RetrievalInheritedLeftLeft Ventricular HypertrophyMachine LearningManualsMeasurementMeasuresMethodsMolecularMonitorMorphologyMyocardiumOutcomeOutputPatientsPhenotypePlayProcessProteinsReaderReadingRegistriesResearchResearch PersonnelRoleSafetyStandardizationStructureSudden DeathSymptomsTestingThickTimeTwo-Dimensional EchocardiographyUnited StatesValidationVentricularadverse outcomeautomated image analysisbasecareerclinical careclinical imagingcohortcomorbiditycostdigitaldisease diagnosisepidemiology studyheart imaginghypertensive heart diseaseimage processinginnovationintelligent algorithminterestmultidisciplinarynovel therapeuticsparticlepatient registryrepositoryresponsestatistical learningtool
项目摘要
PROJECT SUMMARY
Although cardiac amyloidosis and hypertrophic cardiomyopathy (HCM) are relatively rare causes of heart
failure (HF), they are particularly challenging to detect and treat for several shared reasons: (1) on routine
clinical imaging (i.e., echocardiography [echo]), they can be difficult to distinguish from superficially similar,
more common forms of cardiac disease that cause left ventricular (LV) hypertrophy; (2) the diagnoses are
often missed and thus patients can present late in the course of disease at a time when treatment is difficult;
(3) objective, noninvasive metrics that reliably reflect disease progression have not been identified; and (4) the
small number of known patients with these diseases can make epidemiology studies and clinical trials difficult
to organize and conduct. For both cardiac amyloidosis and HCM, echo plays a critical role in both diagnosis
and longitudinal monitoring given its ubiquitous clinical availability, safety, and low cost. More broadly, echo
dominates the current landscape of routine cardiac imaging, with tens of millions of echos performed in the
United States each year. However, the clinical challenges described above highlight several shortcomings of
echo: it is limited in its ability to (1) diagnose disease at its early stages; (2) discriminate between
morphologically similar diseases; and (3) quantify disease progression. This proposal seeks to address
deficiencies in the current echo reading workflow, which is subjective and captures only a small fraction of the
data available in each study. The overall objective of this application is to use advances in machine learning to
develop and validate fully-automated echo image analytic approaches to diagnose and track rare
cardiomyopathies, focusing on cardiac amyloidosis and HCM. Our proposal is centered on the hypothesis
that highly scalable computer vision methods can be applied to echo studies to overcome limitations
of the standard clinical echo reading workflow. Accordingly our aims are: (1) Apply an automated method
for echo quantification and disease identification to detect and differentiate cardiac diseases that cause
increased LV wall thickness; and (2) Characterize quantifiable echo measures of disease progression in
cardiac amyloidosis and HCM and associate these with clinical outcomes. Our multidisciplinary team, which is
composed of experts in cardiomyopathies, echocardiography, computer vision, and machine learning, will
analyze echos and patient data from 2 large patient registries: the Multicenter Amyloid Phenotyping Study
(MAPS) and the Sarcomeric Human Cardiomyopathy Registry (SHaRe) HCM Network, with validation using a
repository of nearly 400,000 echos. The successful completion of our aims will result in an innovative tool for
early diagnosis of myocardial diseases and tracking of disease progression. Importantly, our project will set
the stage for conducting larger epidemiology studies of rare myocardial diseases by automating the
identification of these patients, and thereby developing previously unattainable broad-based cohorts
for these conditions.
项目摘要
尽管心脏淀粉样变性和肥厚性心肌病(HCM)是心脏相对罕见的原因
失败(HF),出于几个共同的原因,他们特别具有挑战性地检测和治疗:(1)
临床成像(即超声心动图[echo]),它们很难与表面上的相似,
引起左心室(LV)肥大的心脏病的更常见形式; (2)诊断是
经常错过,因此在治疗困难的时候可能会在疾病的后期出现;
(3)尚未确定可靠地反映疾病进展的客观无创指标; (4)
这些疾病的少数已知患者可能会使流行病学研究和临床试验变得困难
组织和进行。对于心脏淀粉样变性和HCM,Echo在两个诊断中都起着至关重要的作用
鉴于其无处不在的临床可用性,安全性和低成本,纵向监测。更广泛地回声
主导了常规心脏成像的当前景观,在
每年美国。但是,上面描述的临床挑战突出了几个缺点
ECHO:它的能力有限(1)在早期诊断疾病的能力; (2)区分
形态上相似的疾病; (3)量化疾病进展。该建议旨在解决
当前回声阅读工作流程中的缺陷,这是主观的,仅捕获一小部分
每个研究中可用的数据。该应用程序的总体目的是利用机器学习的进步
开发和验证全自动回声图像分析方法诊断和跟踪罕见
心肌病,专注于心脏淀粉样变性和HCM。我们的建议集中于假设
高度可扩展的计算机视觉方法可以应用于回声研究以克服局限性
标准的临床回声阅读工作流程。因此,我们的目标是:(1)应用自动化方法
用于回声定量和疾病鉴定,以检测和区分引起的心脏病
LV壁厚增加; (2)表征可量化的疾病进展的量化措施
心脏淀粉样变性和HCM与临床结果相关联。我们的多学科团队
由心肌病,超声心动图,计算机视觉和机器学习的专家组成,将
分析来自2个大型患者注册表的回声和患者数据:多中心淀粉样蛋白表型研究
(地图)和肌膜人类心肌病注册中心(共享)HCM网络,并使用
近400,000个Echos的存储库。我们的目标的成功完成将为您提供创新的工具
心肌疾病的早期诊断和疾病进展的追踪。重要的是,我们的项目将设定
通过自动化的罕见心肌疾病进行更大的流行病学研究的阶段
识别这些患者,从而发展以前无法实现的基于广泛的队列
对于这些条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rahul Chandrakant Deo其他文献
Rahul Chandrakant Deo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rahul Chandrakant Deo', 18)}}的其他基金
Resolving Incomplete Penetrance in the Cardiomyopathies and Channelopathies
解决心肌病和通道病的不完全外显率
- 批准号:
8572102 - 财政年份:2013
- 资助金额:
$ 68.72万 - 项目类别:
Bioinformatic Approaches to Small Molecule Profiling of Cardiometabolic Disease
心脏代谢疾病小分子分析的生物信息学方法
- 批准号:
8235806 - 财政年份:2010
- 资助金额:
$ 68.72万 - 项目类别:
Bioinformatic Approaches to Small Molecule Profiling of Cardiometabolic Disease
心脏代谢疾病小分子分析的生物信息学方法
- 批准号:
7989493 - 财政年份:2010
- 资助金额:
$ 68.72万 - 项目类别:
Bioinformatic Approaches to Small Molecule Profiling of Cardiometabolic Disease
心脏代谢疾病小分子分析的生物信息学方法
- 批准号:
8626305 - 财政年份:2010
- 资助金额:
$ 68.72万 - 项目类别:
Bioinformatic Approaches to Small Molecule Profiling of Cardiometabolic Disease
心脏代谢疾病小分子分析的生物信息学方法
- 批准号:
8437210 - 财政年份:2010
- 资助金额:
$ 68.72万 - 项目类别:
Bioinformatic Approaches to Small Molecule Profiling of Cardiometabolic Disease
心脏代谢疾病小分子分析的生物信息学方法
- 批准号:
8111964 - 财政年份:2010
- 资助金额:
$ 68.72万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 68.72万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 68.72万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 68.72万 - 项目类别:
Role of serotonin brain circuit in the developmental emergence ofinnate fear
血清素脑回路在先天恐惧的发展中的作用
- 批准号:
10664638 - 财政年份:2023
- 资助金额:
$ 68.72万 - 项目类别:
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 68.72万 - 项目类别: