Machine learning for the automated identification and tracking of rare myocardial diseases
用于自动识别和跟踪罕见心肌疾病的机器学习
基本信息
- 批准号:9739345
- 负责人:
- 金额:$ 68.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-05 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithm DesignAmyloidAmyloidosisArrhythmiaArtificial IntelligenceCardiacCardiomyopathiesCardiovascular systemCessation of lifeClinicalClinical TrialsClinics and HospitalsCohort StudiesCommunitiesComputer Vision SystemsCoronary heart diseaseDNA Sequence AlterationDataDepositionDetectionDevelopmentDiagnosisDiseaseDisease ProgressionEarly DiagnosisEchocardiographyFaceGeneral PopulationGoalsHeart DiseasesHeart failureHospitalizationHumanHypertensionHypertrophic CardiomyopathyImageImage AnalysisIndividualInformation RetrievalInheritedLeftLeft Ventricular HypertrophyMachine LearningManualsMeasurementMeasuresMethodsMolecularMonitorMorphologyMyocardiumOutcomeOutputPatientsPhenotypePlayProcessProteinsReaderReadingRegistriesResearchResearch PersonnelRoleSafetyStandardizationStructureSudden DeathSymptomsTestingThickTimeTwo-Dimensional EchocardiographyUnited StatesValidationVentricularadverse outcomeautomated image analysisbasecareerclinical careclinical imagingcohortcomorbiditycostdigitaldisease diagnosisepidemiology studyheart imaginghypertensive heart diseaseimage processinginnovationintelligent algorithminterestmultidisciplinarynovel therapeuticsparticlepatient registryrepositoryresponsestatistical learningtool
项目摘要
PROJECT SUMMARY
Although cardiac amyloidosis and hypertrophic cardiomyopathy (HCM) are relatively rare causes of heart
failure (HF), they are particularly challenging to detect and treat for several shared reasons: (1) on routine
clinical imaging (i.e., echocardiography [echo]), they can be difficult to distinguish from superficially similar,
more common forms of cardiac disease that cause left ventricular (LV) hypertrophy; (2) the diagnoses are
often missed and thus patients can present late in the course of disease at a time when treatment is difficult;
(3) objective, noninvasive metrics that reliably reflect disease progression have not been identified; and (4) the
small number of known patients with these diseases can make epidemiology studies and clinical trials difficult
to organize and conduct. For both cardiac amyloidosis and HCM, echo plays a critical role in both diagnosis
and longitudinal monitoring given its ubiquitous clinical availability, safety, and low cost. More broadly, echo
dominates the current landscape of routine cardiac imaging, with tens of millions of echos performed in the
United States each year. However, the clinical challenges described above highlight several shortcomings of
echo: it is limited in its ability to (1) diagnose disease at its early stages; (2) discriminate between
morphologically similar diseases; and (3) quantify disease progression. This proposal seeks to address
deficiencies in the current echo reading workflow, which is subjective and captures only a small fraction of the
data available in each study. The overall objective of this application is to use advances in machine learning to
develop and validate fully-automated echo image analytic approaches to diagnose and track rare
cardiomyopathies, focusing on cardiac amyloidosis and HCM. Our proposal is centered on the hypothesis
that highly scalable computer vision methods can be applied to echo studies to overcome limitations
of the standard clinical echo reading workflow. Accordingly our aims are: (1) Apply an automated method
for echo quantification and disease identification to detect and differentiate cardiac diseases that cause
increased LV wall thickness; and (2) Characterize quantifiable echo measures of disease progression in
cardiac amyloidosis and HCM and associate these with clinical outcomes. Our multidisciplinary team, which is
composed of experts in cardiomyopathies, echocardiography, computer vision, and machine learning, will
analyze echos and patient data from 2 large patient registries: the Multicenter Amyloid Phenotyping Study
(MAPS) and the Sarcomeric Human Cardiomyopathy Registry (SHaRe) HCM Network, with validation using a
repository of nearly 400,000 echos. The successful completion of our aims will result in an innovative tool for
early diagnosis of myocardial diseases and tracking of disease progression. Importantly, our project will set
the stage for conducting larger epidemiology studies of rare myocardial diseases by automating the
identification of these patients, and thereby developing previously unattainable broad-based cohorts
for these conditions.
项目概要
尽管心脏淀粉样变性和肥厚性心肌病 (HCM) 是导致心脏病的相对罕见的原因
失败(HF),由于以下几个共同原因,它们的检测和治疗特别具有挑战性:(1)常规
临床影像(即超声心动图 [echo]),它们可能很难与表面相似的、
导致左心室 (LV) 肥大的更常见的心脏病; (2) 诊断结果为
经常被漏诊,因此患者可能会在病程晚期、治疗困难时就诊;
(3) 尚未确定能够可靠反映疾病进展的客观、非侵入性指标;和(4)
已知患有这些疾病的患者数量较少可能会使流行病学研究和临床试验变得困难
来组织和进行。对于心脏淀粉样变性和 HCM,回波在诊断中都起着至关重要的作用
鉴于其普遍的临床可用性、安全性和低成本,纵向监测。更广泛地说,回声
主导了当前常规心脏成像的格局,在心脏成像中执行了数千万个回波
美国每年。然而,上述临床挑战突出了一些缺点
echo:它的能力有限(1)早期诊断疾病; (2) 区别对待
形态相似的疾病; (3) 量化疾病进展。该提案旨在解决
当前回波读取工作流程的缺陷,该工作流程是主观的并且仅捕获了一小部分
每项研究中可用的数据。该应用程序的总体目标是利用机器学习的进步
开发和验证全自动回波图像分析方法来诊断和跟踪罕见疾病
心肌病,重点关注心脏淀粉样变性和 HCM。我们的建议以假设为中心
高度可扩展的计算机视觉方法可以应用于回声研究以克服局限性
标准临床回声读数工作流程。因此,我们的目标是:(1)应用自动化方法
用于回声量化和疾病识别,以检测和区分引起的心脏病
增加 LV 壁厚; (2) 表征疾病进展的可量化回波测量
心脏淀粉样变性和 HCM 并将其与临床结果相关联。我们的多学科团队
由心肌病、超声心动图、计算机视觉和机器学习领域的专家组成,将
分析来自 2 个大型患者登记处的回声和患者数据:多中心淀粉样蛋白表型研究
(MAPS) 和肉瘤人类心肌病登记处 (SHARe) HCM 网络,并使用
近 400,000 个回声的存储库。我们目标的成功实现将带来一个创新工具
心肌疾病的早期诊断和疾病进展的跟踪。重要的是,我们的项目将设置
通过自动化对罕见心肌疾病进行更大规模的流行病学研究的阶段
识别这些患者,从而开发以前无法实现的基础广泛的队列
对于这些条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rahul Chandrakant Deo其他文献
Rahul Chandrakant Deo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rahul Chandrakant Deo', 18)}}的其他基金
Resolving Incomplete Penetrance in the Cardiomyopathies and Channelopathies
解决心肌病和通道病的不完全外显率
- 批准号:
8572102 - 财政年份:2013
- 资助金额:
$ 68.72万 - 项目类别:
Bioinformatic Approaches to Small Molecule Profiling of Cardiometabolic Disease
心脏代谢疾病小分子分析的生物信息学方法
- 批准号:
8235806 - 财政年份:2010
- 资助金额:
$ 68.72万 - 项目类别:
Bioinformatic Approaches to Small Molecule Profiling of Cardiometabolic Disease
心脏代谢疾病小分子分析的生物信息学方法
- 批准号:
7989493 - 财政年份:2010
- 资助金额:
$ 68.72万 - 项目类别:
Bioinformatic Approaches to Small Molecule Profiling of Cardiometabolic Disease
心脏代谢疾病小分子分析的生物信息学方法
- 批准号:
8626305 - 财政年份:2010
- 资助金额:
$ 68.72万 - 项目类别:
Bioinformatic Approaches to Small Molecule Profiling of Cardiometabolic Disease
心脏代谢疾病小分子分析的生物信息学方法
- 批准号:
8437210 - 财政年份:2010
- 资助金额:
$ 68.72万 - 项目类别:
Bioinformatic Approaches to Small Molecule Profiling of Cardiometabolic Disease
心脏代谢疾病小分子分析的生物信息学方法
- 批准号:
8111964 - 财政年份:2010
- 资助金额:
$ 68.72万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 68.72万 - 项目类别:
Role of serotonin brain circuit in the developmental emergence ofinnate fear
血清素脑回路在先天恐惧的发展中的作用
- 批准号:
10664638 - 财政年份:2023
- 资助金额:
$ 68.72万 - 项目类别:
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 68.72万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 68.72万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 68.72万 - 项目类别: