Modeling speech intelligibility in competing backgrounds by the hearing-impaired

对听障者在竞争背景下的语音清晰度进行建模

基本信息

项目摘要

DESCRIPTION (provided by applicant): Hearing-impaired (HI) listeners are severely disadvantaged in noisy situations. Fewer than 30% of hearing-aid users are satisfied with the performance of their devices in noise, even though satisfaction levels are considerably higher for less adverse conditions (Kochkin, 2000). These difficulties are compounded in fluctuating backgrounds. While normal-hearing (NH) individuals are able to take advantage of momentary dips in the level of a masker to receive a significant (5-10 dB) fluctuating-masker benefit (FMB) to speech intelligibility relative to stationary noise, HI listeners seem unable to do so (Festen and Plomp, 1990). The proposed research aims to elucidate the mechanisms responsible for the reduced FMB in HI listeners, setting the stage for the development of signal processing algorithms to target these specific mechanisms. Attempting to explain the limited FMB in HI listeners, past studies have focused on reduced audibility, reduced spectral or temporal resolution, or limited cues for target-source separation. This proposal explores the hypothesis that differences in the signal-to-noise ratio (SNR) at which HI and NH listeners are tested contribute to FMB differences, and for some fluctuating maskers may account for most of the reduction in FMB for HI listeners. An SNR-dependent FMB is predicted by an existing model of speech intelligibility (Rhebergen et al., 2006), if the effective speech dynamic range is assumed to be narrower for modulated maskers than previously estimated for stationary noise. Experiment 1 will directly measure this effective dynamic range to refine the model and improve the accuracy of FMB predictions across SNRs. Preliminary results indicate that after SNR differences are controlled, HI and simulated HI (HISIM) listeners show a similar FMB to NH listeners for certain fluctuating maskers. Experiments 2 and 3 will differentiate fluctuating-maskers types based on the extent to which the FMB is still reduced after SNR and audibility are equalized between listener groups. This proposal has the potential to substantially impact research efforts to improve speech intelligibility in noise. For fluctuating maskers where SNR effects do not account for the full magnitude of FMB differences, the methods developed here could control SNR differences to more directly pursue impairment-related distortions responsible for limiting FMB. For fluctuating maskers where HI listeners are shown to benefit from masker fluctuations as much as NH listeners after SNR differences are controlled, future work would seek to (a) improve target speech audibility, e.g. via fast compression, which could selectively amplify a low-level target in a fluctuating background and (b) identify factors limiting intelligibility in noise, generally, with the idea that the findings should also extend to fluctuating maskers. Furthermore, the refined speech intelligibility model has the potential to improve the clinical management of HI listeners via (a) its use in the development of signal processing algorithms to improve speech intelligibility and (b) its clinical application in identifying individuals likely to suffer distortions beyond audibility that limit speech intelligibility in fluctuating backgrounds. PUBLIC HEALTH RELEVANCE: Hearing-impaired listeners experience the most difficulty when trying to listen in noisy environments, particularly those environments with masking sounds that fluctuate in intensity, like interfering speech. This proposal seeks to understand and model the underlying causes of these particular difficulties. The knowledge gained and the computational model developed over the course of the project could significantly impact the direction of research and rehabilitation efforts aimed at alleviating the problems experienced by impaired listeners in noisy environments.
描述(由申请人提供):听力受损 (HI) 的听众在嘈杂的环境中处于严重不利地位。不到 30% 的助听器用户对其设备在噪声中的性能感到满意,尽管在不利条件较少的情况下满意度要高得多(Kochkin,2000)。这些困难在不断变化的背景下变得更加复杂。虽然听力正常 (NH) 的人能够利用掩蔽器电平的瞬时下降,以获得相对于固定噪声而言显着 (5-10 dB) 的波动掩蔽器益处 (FMB),从而提高语音清晰度,但 HI 听众似乎无法这样做(Festen 和 Plomp,1990)。拟议的研究旨在阐明导致 HI 听众 FMB 减少的机制,为开发针对这些特定机制的信号处理算法奠定基础。过去的研究试图解释 HI 听众中有限的 FMB,主要集中在可听度降低、频谱或时间分辨率降低或目标源分离的线索有限。该提案探讨了这样的假设:测试 HI 和 NH 听众时的信噪比 (SNR) 差异会导致 FMB 差异,并且对于某些波动的掩蔽器而言,可能是 HI 听众 FMB 减少的主要原因。如果假设调制掩蔽器的有效语音动态范围比之前估计的平稳噪声窄,则可以通过现有的语音清晰度模型来预测依赖于 SNR 的 FMB(Rhebergen 等人,2006)。实验 1 将直接测量该有效动态范围,以改进模型并提高 FMB 跨 SNR 预测的准确性。初步结果表明,在控制 SNR 差异后,对于某些波动掩蔽,HI 和模拟 HI (HISIM) 收听者表现出与 NH 收听者类似的 FMB。实验 2 和 3 将根据听者组之间的 SNR 和可听度均衡后 FMB 仍降低的程度来区分波动掩蔽器类型。该提案有可能对提高噪声中语音清晰度的研究工作产生重大影响。对于 SNR 效应不能完全解释 FMB 差异的波动掩蔽器,本文开发的方法可以控制 SNR 差异,以更直接地追踪导致限制 FMB 的损伤相关失真。对于波动掩蔽,在控制 SNR 差异后,HI 收听者与 NH 收听者一样受益于掩蔽波动,未来的工作将寻求 (a) 提高目标语音的可听度,例如通过快速压缩,可以选择性地放大波动背景中的低水平目标,并且(b)识别限制噪声清晰度的因素,一般来说,研究结果也应该扩展到波动掩蔽器。此外,经过改进的语音清晰度模型有可能通过以下方式改善 HI 听众的临床管理:(a) 将其用于开发信号处理算法以提高语音清晰度;(b) 将其临床应用于识别可能遭受超出范围的失真的个人。可听度限制了波动背景下的语音清晰度。 公共健康相关性:听力受损的听众在嘈杂的环境中聆听时会遇到最大的困难,特别是那些强度波动较大的掩蔽声音(例如干扰语音)的环境。该提案旨在理解和模拟这些特殊困难的根本原因。在项目过程中获得的知识和开发的计算模型可能会显着影响研究和康复工作的方向,旨在减轻噪音环境中受损听众所遇到的问题。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Gary Bernstein其他文献

Joshua Gary Bernstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua Gary Bernstein', 18)}}的其他基金

Optimizing bilateral and single-sided-deafness cochlear implants for functioning in complex auditory environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
  • 批准号:
    10654316
  • 财政年份:
    2023
  • 资助金额:
    $ 11.18万
  • 项目类别:
Optimizing Bilateral and Single-Sided Deafness Cochlear Implants for Functioning in Complex Auditory Environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
  • 批准号:
    9216078
  • 财政年份:
    2016
  • 资助金额:
    $ 11.18万
  • 项目类别:
Optimizing Bilateral and Single-Sided Deafness Cochlear Implants for Functioning in Complex Auditory Environments
优化双侧和单侧耳聋人工耳蜗植入物以在复杂的听觉环境中发挥作用
  • 批准号:
    10065502
  • 财政年份:
    2016
  • 资助金额:
    $ 11.18万
  • 项目类别:
Modeling speech intelligibility in competing backgrounds by the hearing-impaired
对听障者在竞争背景下的语音清晰度进行建模
  • 批准号:
    7884046
  • 财政年份:
    2010
  • 资助金额:
    $ 11.18万
  • 项目类别:
Modeling speech intelligibility in competing backgrounds by the hearing-impaired
对听障者在竞争背景下的语音清晰度进行建模
  • 批准号:
    8040914
  • 财政年份:
    2010
  • 资助金额:
    $ 11.18万
  • 项目类别:

相似国自然基金

基于机器学习算法的针刺干预偏头痛预后差异生物学机制和临床-多组学预测模型构建研究
  • 批准号:
    82374572
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
sc3S+结构型剪接元件预测算法揭示干性剪接因子ELAVL2调控肝母细胞瘤恶性演进的机制及临床应用研究
  • 批准号:
    82302642
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人类基因相关临床表型预测的高效算法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
融合大脑白质微结构和网络拓扑分析的AD临床早期辅助诊断算法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于早期临床数据-基因组学和机器学习算法研究脓毒症表型的构建、机制及治疗
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Transcranial Ultrasound Algorithms and Device for Rapid Stroke Determination by Paramedics
用于医护人员快速确定中风的经颅超声算法和设备
  • 批准号:
    10730722
  • 财政年份:
    2023
  • 资助金额:
    $ 11.18万
  • 项目类别:
The role of stress, social support, and brain function on alcohol misuse in women
压力、社会支持和大脑功能对女性酗酒的影响
  • 批准号:
    10676428
  • 财政年份:
    2023
  • 资助金额:
    $ 11.18万
  • 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
  • 批准号:
    10723819
  • 财政年份:
    2023
  • 资助金额:
    $ 11.18万
  • 项目类别:
Predicting Outcomes for Uterine Fibroid Embolization by using Deep Learning of Paired MRI Scans
使用配对 MRI 扫描的深度学习预测子宫肌瘤栓塞的结果
  • 批准号:
    10724513
  • 财政年份:
    2023
  • 资助金额:
    $ 11.18万
  • 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
  • 批准号:
    10655968
  • 财政年份:
    2023
  • 资助金额:
    $ 11.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了