Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
基本信息
- 批准号:8525092
- 负责人:
- 金额:$ 16.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-24 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAwardCalibrationCancer BiologyCancer ModelClinical DataClinical TrialsColorectal CancerCommunitiesComplexComputer SimulationComputer softwareComputersDataDecision AnalysisDevelopmentDisease modelDoctor of PhilosophyEngineeringEnrollmentEthicsEventGeneral HospitalsGoalsGrowthGuidelinesHealth PolicyHealthcareHybridsInstitutesInstitutionInternetInterventionK-Series Research Career ProgramsLanguageLifeMalignant NeoplasmsMalignant neoplasm of lungMassachusettsMeasuresMentorsMentorshipMethodologyMethodsModelingNatural HistoryNeoplasm MetastasisOutcomeOutcomes ResearchPerformancePhysicsPoliciesPolicy MakerPolymersProbabilityProceduresProcessPublic HealthRandomized Clinical TrialsResearchResearch PersonnelResearch TrainingSamplingScienceScreening for cancerSenior ScientistSpace ModelsSpeedStudy modelsTechniquesTechnology AssessmentTestingTimeTrainingYincareercareer developmentdensitydesigndesign and constructionexperiencefollow-upimprovedinstructormedical schoolsmodel developmentmodels and simulationmortalityphysical scienceprogramspublic health relevancerandomized trialsimulationskillssymposiumtooltumor growthtumor registry
项目摘要
DESCRIPTION (provided by applicant): Cancer screening programs are increasingly evaluated with simulation models because they allow health policy makers to consider scenarios that could not be evaluated by randomized clinical trials for practical, financial or ethical reasons. However, few of these models employ rigorous mathematical methods for model calibration. Calibration of cancer screening simulation models to existing clinical data is vital to accurate model prediction. The applicant's immediate goal is to adapt, extend, and promote the use of multi-criteria optimization techniques to improve the calibration of simulation models for cancer screening policy prediction and planning. The applicant, Chung Yin Kong, PhD, is a senior scientist at the Massachusetts General Hospital's Institute for Technology Assessment (ITA) and an instructor at Harvard Medical School. He is trained in Physics (BS) and Polymer Science and Engineering (PhD). This proposed research is tailored to utilize his computer modeling background in physical science as well as the numerous simulation projects at the ITA to test his hypotheses for improving the design and construction of cancer screening models with multi-criteria optimization techniques. The specific aims of the research plan are: (1) to adapt multi-criteria optimization to provide automated procedures for model calibration. As an example, optimization algorithms will be applied to and evaluated with two existing microsimulation models at the ITA: the Lung Cancer Policy Model (LCPM) and the Simulation Model of Colorectal Cancer (SimCRC) model; (2) to extend the use of multi-criteria optimization techniques to aid the design of the underlying cancer biology components in the models and to improve computational speed; (3) to promote the use of multi-criteria optimization techniques among cancer screening modelers. The experience of adapting and extending these techniques will be developed into a calibration platform with instructional diagrams, tutorials, and software modules, which will be distributed on the Internet and at scientific conferences. The end results of the proposed project will improve the speed of both the calibration process and the simulation models themselves. The proposed training plan includes mentoring, coursework, and career development activities preparing him to undertake the proposed research and to fully-transition into the field of cancer simulation modeling. The research and training of this proposed project will be performed under the mentorship of Dr. G. Scott Gazelle, an internationally known expert in cancer outcome research and decision analysis science. The applicant's long term career goal is to become a leader in developing state-of-the-art simulation methods for disease modeling. This award will advance the applicant's academic career and help him to achieve his goal to be a productive, independent investigator.
PUBLIC HEALTH RELEVANCE: This research is relevant to public health because it improves the accuracy of simulation models for cancer screening policy prediction and planning.
描述(由申请人提供):通过模拟模型对癌症筛查计划进行了越来越多的评估,因为它们允许健康政策制定者考虑出于实用,财务或道德原因而无法通过随机临床试验评估的情况。但是,这些模型中很少有使用严格的数学方法进行模型校准。对现有临床数据的癌症筛查模拟模型的校准对于准确的模型预测至关重要。申请人的近期目标是适应,扩展和促进多标准优化技术的使用,以改善用于癌症筛查政策预测和计划的模拟模型的校准。申请人Chung Yin Kong博士是马萨诸塞州综合医院技术评估研究所(ITA)的高级科学家,也是哈佛医学院的讲师。他接受了物理学(BS)和聚合物科学与工程(PHD)的培训。这项拟议的研究旨在利用他在物理科学领域的计算机建模背景以及ITA上的众多仿真项目,以测试他通过多标准优化技术改善癌症筛查模型的设计和构建的假设。研究计划的具体目的是:(1)调整多标准优化以提供模型校准的自动化程序。例如,优化算法将在ITA上使用两个现有的微仿真模型应用于和评估:肺癌策略模型(LCPM)和结直肠癌(SIMCRC)模型的仿真模型; (2)扩展使用多标准优化技术以帮助模型中潜在的癌症生物学成分的设计并提高计算速度; (3)促进癌症筛查建模者中多标准优化技术的使用。适应和扩展这些技术的经验将发展为具有教学图,教程和软件模块的校准平台,这些模块将在互联网和科学会议上分发。拟议项目的最终结果将提高校准过程和仿真模型本身的速度。拟议的培训计划包括指导,课程和职业发展活动,使他准备进行拟议的研究并将其完全转变为癌症模拟建模领域。该拟议项目的研究和培训将在癌症结果研究和决策分析科学领域的国际知名专家G. Scott Gazelle博士的指导下进行。申请人的长期职业目标是成为开发疾病建模最新模拟方法的领导者。该奖项将推进申请人的学术生涯,并帮助他实现自己的目标,成为一名富有成效的独立研究员。
公共卫生相关性:这项研究与公共卫生有关,因为它提高了模拟模型的癌症筛查政策预测和计划的准确性。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MRI-guided focused ultrasound surgery for uterine fibroid treatment: a cost-effectiveness analysis.
- DOI:10.2214/ajr.13.11446
- 发表时间:2014-08
- 期刊:
- 影响因子:0
- 作者:Kong CY;Meng L;Omer ZB;Swan JS;Srouji S;Gazelle GS;Fennessy FM
- 通讯作者:Fennessy FM
Identifying best-fitting inputs in health-economic model calibration: a Pareto frontier approach.
- DOI:10.1177/0272989x14528382
- 发表时间:2015-02
- 期刊:
- 影响因子:0
- 作者:Enns EA;Cipriano LE;Simons CT;Kong CY
- 通讯作者:Kong CY
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung Yin Kong其他文献
Chung Yin Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chung Yin Kong', 18)}}的其他基金
Modeling Best Approaches for Cardiovascular Disease Prevention in Cancer Survivors
模拟癌症幸存者心血管疾病预防的最佳方法
- 批准号:
10608446 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10451668 - 财政年份:2021
- 资助金额:
$ 16.89万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10654616 - 财政年份:2021
- 资助金额:
$ 16.89万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10317717 - 财政年份:2021
- 资助金额:
$ 16.89万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10450181 - 财政年份:2021
- 资助金额:
$ 16.89万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10668248 - 财政年份:2021
- 资助金额:
$ 16.89万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10317359 - 财政年份:2021
- 资助金额:
$ 16.89万 - 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:
8548101 - 财政年份:2010
- 资助金额:
$ 16.89万 - 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:
8799653 - 财政年份:2010
- 资助金额:
$ 16.89万 - 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
- 批准号:
8298239 - 财政年份:2009
- 资助金额:
$ 16.89万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
- 批准号:
10721762 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别:
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别:
Optimizing the Diagnostic Strategy for Acute Musculoskeletal Infections in Children: Evaluating the Clinical Performance and Comparative Cost of a Noninvasive Diagnostic Technique
优化儿童急性肌肉骨骼感染的诊断策略:评估无创诊断技术的临床表现和比较成本
- 批准号:
10664298 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 16.89万 - 项目类别: