Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
基本信息
- 批准号:10317717
- 负责人:
- 金额:$ 75.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
SUMMARY
The goal of this project is to optimize the management of screen-detected pulmonary nodules thus maximizing
the benefits of lung cancer screening. Lung cancer is the most common cause of cancer death in the US. To
curb the burden of this disease, multiple national organizations recommend lung cancer screening with low-
dose computed tomography (LDCT). However, up to one third of screening LDCTs identify pulmonary nodules
but only 1-3% of these are cancers. Screen-detected pulmonary nodules are then followed-up with additional
imaging tests and, in some cases, invasive and potentially harmful procedures. Follow-up and subsequent
work-up procedures account for a large portion of screening-associated unnecessary harms and costs. An
optimal nodule management algorithm should substantially reduce these harms and provide early cancer
detection benefits. However, the optimal management of pulmonary nodules detected during lung cancer
screening is currently unknown. There are differing major guidelines for LDCT screen-detected lung nodule
management. Most widely implemented guidelines focus on nodule characteristics to decide the need for and
type of follow-up. These guidelines fail to incorporate other key patient factors such as age, sex, smoking
history, and comorbidities. Furthermore, additional factors can heavily impact the diagnostic accuracy and
harms of nodule management strategies and ultimately, the benefits of lung cancer screening. These include:
1) risk of lung cancer based on participant and nodule characteristics; 2) cancer aggressiveness; 3) type,
sequence and timing of nodule follow-up; 4) follow-up and biopsy related complications; 5) competing risks of
death (non-lung cancer mortality); and 6) impact of evaluation on quality of life. Furthermore, differences in
smoking patterns, lung cancer risk, and comorbidities among diverse race and ethnic groups are not
incorporated in current nodule management guidelines. In this project, we will use simulation modeling to
efficiently determine optimal algorithms that consider all the issues listed above. We will build a simulation
model, the Multi-Racial and Ethnic Lung Cancer Model (MELCAM), based on a previous modeling framework
used by our team to extensively study various aspects of lung cancer control. The project Specific Aims are to:
1) Derive and validate MELCAM to simulate the management and subsequent outcomes of screening
participants from diverse racial and ethnic backgrounds; 2) Use MELCAM to compare existing nodule
management protocols in terms of overall and quality-adjusted life-year gains and harms; 3) Use MELCAM to
generate nodule management algorithm(s) that consider the impact of both nodule and patient factors on
cancer risk, screening harms, and life expectancy to optimize the types and timing of follow-up procedures;
and 4) Determine the cost-effectiveness of existing and novel follow-up algorithms. Our study is innovative in
applying state-of-the-art modeling techniques and personalized approaches to the optimization of pulmonary
nodule management maximizing the benefits of lung cancer screening in diverse populations.
概括
该项目的目的是优化屏幕检测的肺结核的管理,从而最大化
肺癌筛查的好处。肺癌是美国癌症死亡的最常见原因。到
遏制这种疾病的负担,多个国家组织建议以低 -
剂量计算机断层扫描(LDCT)。但是,多达三分之一的筛选LDCT识别肺结核
但是其中只有1-3%是癌症。然后跟踪筛网检测的肺结核
成像测试,在某些情况下是侵入性和潜在有害程序。后续和随后
锻炼程序是大部分筛查相关的不必要的危害和成本。一个
最佳结节管理算法应大大减少这些危害并提供早期癌症
检测益处。但是,在肺癌期间检测到的肺结核的最佳管理
筛查目前未知。 LDCT屏幕检测的肺结节有不同的主要准则
管理。最广泛实施的指南专注于结节特征,以决定和
随访类型。这些准则未能纳入其他关键患者因素,例如年龄,性别,吸烟
历史和合并症。此外,其他因素可能会严重影响诊断准确性和
危害结节管理策略,最终是肺癌筛查的好处。其中包括:
1)基于参与者和结节特征的肺癌风险; 2)癌症的侵略性; 3)类型,
结节随访的序列和时机; 4)随访和活检相关并发症; 5)竞争风险
死亡(非肺癌死亡率); 6)评估对生活质量的影响。此外,差异
不同种族和种族之间的吸烟模式,肺癌风险以及合并症不是
并入当前的结节管理指南。在这个项目中,我们将使用仿真建模到
有效地确定考虑上述所有问题的最佳算法。我们将构建模拟
基于先前的建模框架的模型,多种族和种族肺癌模型(MELCAM)
我们的团队用于广泛研究肺癌控制的各个方面。该项目的特定目的是:
1)得出并验证MELCAM以模拟筛选的管理和后续结果
来自不同种族和种族背景的参与者; 2)使用MelCAM比较现有的结节
在整体和质量调整的生活年度增长和危害方面的管理方案; 3)使用梅尔卡姆
产生结节管理算法,该算法考虑结节和患者因素对
癌症风险,筛查危害和预期寿命,以优化随访程序的类型和时机;
4)确定现有和新型随访算法的成本效益。我们的研究是创新的
应用最先进的建模技术和个性化方法来优化肺部
结节管理最大化肺癌筛查在不同人群中的好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Chung Yin Kong的其他基金
Modeling Best Approaches for Cardiovascular Disease Prevention in Cancer Survivors
模拟癌症幸存者心血管疾病预防的最佳方法
- 批准号:1060844610608446
- 财政年份:2023
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:1045166810451668
- 财政年份:2021
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:1065461610654616
- 财政年份:2021
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:1045018110450181
- 财政年份:2021
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:1066824810668248
- 财政年份:2021
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:1031735910317359
- 财政年份:2021
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:85481018548101
- 财政年份:2010
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:87996538799653
- 财政年份:2010
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
- 批准号:85250928525092
- 财政年份:2009
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
- 批准号:82982398298239
- 财政年份:2009
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:1046225710462257
- 财政年份:2023
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:1063936010639360
- 财政年份:2023
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
Mobile Health and Oral Testing to Optimize Tuberculosis Contact Tracing in Colombia
移动健康和口腔测试可优化哥伦比亚的结核病接触者追踪
- 批准号:1066788510667885
- 财政年份:2023
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:1081686410816864
- 财政年份:2023
- 资助金额:$ 75.19万$ 75.19万
- 项目类别:
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
- 批准号:1065900710659007
- 财政年份:2023
- 资助金额:$ 75.19万$ 75.19万
- 项目类别: