Biologically inspired engineering of hierarchical vascular networks
分层血管网络的生物启发工程
基本信息
- 批准号:8427870
- 负责人:
- 金额:$ 4.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-10 至 2015-02-09
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgeAmericasAnastomosis - actionAngiogenic FactorAnimal ModelBiologicalBioreactorsBloodBlood VesselsBlood capillariesCardiacCardiac DeathCardiac MyocytesCardiovascular DiseasesCause of DeathCellsCessation of lifeClinicalCoculture TechniquesCoronary ArteriosclerosisCoronary VesselsCountryDiffusionEncapsulatedEndothelial CellsEngineeringEnvironmentGelatinGenerationsGrowthGrowth FactorHeartHeart DiseasesHeart TransplantationHydrogelsImplantIn VitroIndividualIschemiaLaboratoriesLiquid substanceMechanicsMethodsMicrofabricationMicrofluidicsMicrospheresModelingMolecularMyocardial InfarctionMyocardial tissueMyocardiumNatural regenerationNutrientOrganPatientsPatternPerformancePerfusionPhysiologicalPlatelet-Derived Growth FactorRattusRecurrenceRegulationSignal TransductionSmooth Muscle MyocytesSpecific qualifier valueStructureSurgical AnastomosisSystemTechniquesTechnologyTestingTimeTissue EngineeringTissuesTransplanted tissueTreesTubeVascular Endothelial Growth FactorsVascular blood supplyWorkabdominal aortabaseburden of illnesscapillaryconditioningcrosslinkcytokinedesignexperiencefluid flowimmunogenicityimprovedin vivolithographymillimeterphysical conditioningrepairedscaffold
项目摘要
DESCRIPTION (provided by applicant): There are 1.2 million new or recurrent coronary attacks each year in the U.S, resulting in myocardial infarction or tissue death. The generation of functional cardiac tissue to replace damaged tissue could significantly change the way we currently treat heart disease. Consequently, a robust method of fabricating blood vessels could facilitate growth of larger scale cardiac tissue for treating this increasing burden of disease in America. Our aim in this proposal is to add a vascular network which can supply the cardiac graft with nutrient transport in vitro and be connected to blood supply in vivo. Micro fabrication technologies allow for the spatially precise creation of a cell-instructive environment and will be used to pattern 100 um to 1 mm channels within a graft material. Mimicking physiologic vasculature, the hierarchically organized vascular network of blood vessels will be induced to branch from relatively large (millimeters) to very small (10 um) conduits. Cardiac tissue will be grown around the vessel structure, using a hydrogel encapsulation method. Bioreactors will provide biophysical signaling using a time varying fluid flow regime to mature the blood vessels along with angiogenic cytokines to induce individual capillary sprouting providing transport at the cellular scale. This hierarchical design is particularly important because it creates a specific inlet and outlet for in vitro connectivity and clear ends for surgical anastomosis in vivo, while maintaining a micro vascular network for efficient nutrient delivery. This design bridges the gap between larger scale singular vascular tubes which often lack effective transport to individual cells, and co culture studies with endothelial cells which lack fluid perfusion. The vascular functionality of the cardiac graft will be assessed in vivo an interposition graft in an end to end anastomosis in the rat abdominal aorta. The specific aims of the proposal will be to (1) Use micro fabrication technologies to create a hierarchically designed template for vascular formation, (2) Apply biophysical regulation to induce capillary sprouting, (3) Functionally test the survival and functional perfusion of the cardiac graft in an in vivo rat abdominal aorta model. This project will build upon our laboratory's previous experience and expertise in cardiac tissue engineering with advanced biological micro fabrication techniques, to create a large, perfused cardiac graft that can be used in vivo. We hope that these studies can aid to the overall effort to reduce the national burden of cardiovascular disease, by creating a cardiac patch that can be used for patients suffering from myocardial infarctions and coronary artery disease.
描述(由申请人提供):美国每年有 120 万例新发或复发冠心病发作,导致心肌梗塞或组织死亡。产生功能性心脏组织来替代受损组织可以显着改变我们目前治疗心脏病的方式。因此,一种强大的血管制造方法可以促进更大规模的心脏组织的生长,以治疗美国日益增加的疾病负担。我们在该提案中的目的是添加一个血管网络,该血管网络可以为心脏移植物提供体外营养运输并与体内血液供应连接。微制造技术可以在空间上精确地创建细胞指导环境,并将用于在移植材料内形成 100 微米至 1 毫米的通道图案。模仿生理脉管系统,分层组织的血管网络将被诱导从相对较大(毫米)的导管分支到非常小的(10 微米)导管。使用水凝胶封装方法,心脏组织将在血管结构周围生长。生物反应器将使用随时间变化的流体流动方式提供生物物理信号,使血管成熟,并与血管生成细胞因子一起诱导个体毛细血管发芽,从而在细胞尺度上提供运输。这种分层设计尤其重要,因为它为体外连接创建了特定的入口和出口,为体内手术吻合创建了清晰的末端,同时维持了微血管网络以实现有效的营养输送。这种设计弥补了通常缺乏对单个细胞的有效运输的较大规模的单一血管与缺乏液体灌注的内皮细胞的共培养研究之间的差距。心脏移植物的血管功能将通过大鼠腹主动脉端对端吻合术中的插入移植物进行体内评估。该提案的具体目标是(1)使用微制造技术创建分层设计的血管形成模板,(2)应用生物物理调节诱导毛细血管萌芽,(3)功能测试心脏的存活和功能灌注体内大鼠腹主动脉模型中的移植物。该项目将利用我们实验室先前在心脏组织工程方面的经验和专业知识,采用先进的生物微制造技术,创建可在体内使用的大型灌注心脏移植物。我们希望这些研究能够通过创建可用于患有心肌梗塞和冠状动脉疾病的患者的心脏补片,有助于减轻国家心血管疾病负担的整体努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGE ENG其他文献
GEORGE ENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGE ENG', 18)}}的其他基金
Differential Wnt Dependencies in Colon Epithelium.
结肠上皮细胞中不同的 Wnt 依赖性。
- 批准号:
10739179 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Biologically inspired engineering of hierarchical vascular networks
分层血管网络的生物启发工程
- 批准号:
8256167 - 财政年份:2012
- 资助金额:
$ 4.72万 - 项目类别:
Biologically Inspired Engineering of Hierarchical Vascular Networks
分层血管网络的生物启发工程
- 批准号:
8604742 - 财政年份:2012
- 资助金额:
$ 4.72万 - 项目类别:
Novel Triorganotins against Adult and Larval Mosquitoes
针对成蚊和幼虫蚊子的新型三有机锡
- 批准号:
6821281 - 财政年份:2004
- 资助金额:
$ 4.72万 - 项目类别:
ORGANOTINS AS POSSIBLE LARVICIDES/INSECTICIDES TO CONTROL MALARIA
有机锡作为可能的杀幼虫剂/杀虫剂来控制疟疾
- 批准号:
6204073 - 财政年份:1999
- 资助金额:
$ 4.72万 - 项目类别:
ORGANOTINS AS POSSIBLE LARVICIDES/INSECTICIDES TO CONTROL MALARIA
有机锡作为可能的杀幼虫剂/杀虫剂来控制疟疾
- 批准号:
6107006 - 财政年份:1998
- 资助金额:
$ 4.72万 - 项目类别:
ORGANOTINS AS POSSIBLE LARVICIDES/INSECTICIDES TO CONTROL MALARIA
有机锡作为可能的杀幼虫剂/杀虫剂来控制疟疾
- 批准号:
6239892 - 财政年份:1997
- 资助金额:
$ 4.72万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
An active learning framework for adaptive autism healthcare
适应性自闭症医疗保健的主动学习框架
- 批准号:
10716509 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
The impact of bilingualism on cognitive reserve/resilience using socio-demographically and linguistically diverse populations
双语对社会人口和语言多样化人群的认知储备/弹性的影响
- 批准号:
10584245 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 4.72万 - 项目类别: