PP1:NIPP1 HOLOENZYME
PP1:NIPP1全酶
基本信息
- 批准号:8363375
- 负责人:
- 金额:$ 0.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesBindingBinding SitesCatalytic DomainCell Cycle RegulationCell divisionCell physiologyComplexCrystallizationCrystallographyDNA RepairDataEnzymesEukaryotaEventFundingGene SilencingGrantHoloenzymesLightMolecular ConformationNational Center for Research ResourcesNeedlesNuclearNuclear ProteinPrincipal InvestigatorProtein Serine/Threonine PhosphataseProtein phosphataseProteinsRNA SplicingRegulationResearchResearch InfrastructureResourcesSamplingSiteSourceSurfaceSynchrotronsToxinUnited States National Institutes of HealthWorkcostinhibitor/antagonistinsightinterestpreventresearch studysmall moleculetwo-dimensional
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
Phosphoprotein Phosphatase 1, PP1, is a ubiquitous serine/threonine phosphatase (330 residues, ~ 38 kDa) expressed in all eukaryotes that regulates a wide array of cellular processes. The promiscuity of PP1 is greatly reduced by interaction with several inhibitory and targeting proteins. By interacting with residues of the active site of PP1, inhibitory proteins prevent to access catalytic residues of the enzyme. The targeting proteins relocate PP1 to a particular cellular milieu and interact with the surface of the catalytic core in such a way that only certain binding sites are exposed, whereas, others are sites are sterically occluded. Current crystallographic studies of PP1 in complex with small molecule toxins, inhibitory proteins and targeting proteins have revealed that the surface and conformation of the catalytic core remains invariant; however, all of the proteins studied to date have shown markeedly different themes in their interactions with the PP1. To shed new insights on PP1 regulation by targeting proteins, we have initiated work with one such protein, NIPP (Nuclear Inhibitor of PP1). NIPP targets PP1 after interaction with various proteins implicated in four different cellular processes (cell division, gene silencing, DNA repair and RNA splicing). Since targeting of NIPP1 to PP1 is a major event in cell cycle regulation; thus, we are interested in understanding this relationship at the atomic level. After exhaustive biophysical characterization of the monomeric form of the PP1-binding domain of NIPP, we have moved to studying the holoenzyme complex; to this end, we have determined the Kd with ITC (low nM), used data from complex NMR experiments to optimize samples for crystallization trails and attained two dimensional needle-like crystals.
该副本是利用资源的众多研究子项目之一
由NIH/NCRR资助的中心赠款提供。对该子弹的主要支持
而且,副投影的主要研究员可能是其他来源提供的
包括其他NIH来源。 列出的总费用可能
代表subproject使用的中心基础架构的估计量,
NCRR赠款不直接向子弹或副本人员提供的直接资金。
磷酸蛋白磷酸酶1,PP1是无处不在的丝氨酸/苏氨酸磷酸酶(330个残基,〜38 kDa),在调节广泛的细胞过程的所有真核生物中表达。 通过与几种抑制性和靶向蛋白的相互作用,PP1的滥交大大降低了。 通过与PP1活性位点的残基相互作用,抑制性蛋白会阻止访问酶的催化残基。 靶向蛋白将PP1重新定位为特定的细胞环境,并与催化核的表面相互作用,使得只有某些结合位点暴露了,而其他位置则在空间上被遮住。 PP1在与小分子毒素,抑制蛋白和靶向蛋白的复合物中的当前晶体学研究表明,催化核的表面和构象仍然不变。但是,迄今为止研究的所有蛋白质在与PP1的相互作用中都表现出了越来越不同的主题。 为了通过靶向蛋白质对PP1调节进行新的见解,我们已经与一种这样的蛋白质NIPP(PP1的核抑制剂)开始了工作。 NIPP与与四种不同的细胞过程相互作用(细胞分裂,基因沉默,DNA修复和RNA剪接)相互作用后的PP1。 由于将NIPP1靶向PP1是细胞周期调节中的重大事件。因此,我们有兴趣在原子层面理解这种关系。 在NIPP的PP1结合结构域的单体形式的详尽生物物理表征之后,我们已转向研究全酶复合物。为此,我们已经用ITC(低NM)确定了KD,该数据使用了来自复杂NMR实验的数据,以优化样品以进行结晶径,并获得了两个尺寸的针状晶体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Page其他文献
Rebecca Page的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca Page', 18)}}的其他基金
The regulation of phosphoprotein phosphatases in the nucleus
细胞核中磷蛋白磷酸酶的调节
- 批准号:
10656696 - 财政年份:2023
- 资助金额:
$ 0.4万 - 项目类别:
相似国自然基金
结合态抗生素在水产品加工过程中的消解机制与产物毒性解析
- 批准号:32302247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ABHD6与AMPA受体结合位点的鉴定及该位点在AMPA受体转运和功能调控中的作用研究
- 批准号:32300794
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α-突触核蛋白与脂肪酸结合蛋白FABP3相互作用维持自身低聚体形态的机制研究
- 批准号:82301632
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于荧光共振能量转移机理构建多肽荧光探针用于可视化Zn2+结合SQSTM1/p62调节自噬在前列腺癌去势耐受中的作用机制
- 批准号:82303568
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
手性氢键供体与阴离子结合催化乙烯基醚的立体选择性阳离子聚合
- 批准号:22301279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 0.4万 - 项目类别:
Mechanistic Studies of Gyrase/Topoisomerase IV-Targeted Antibacterials
旋转酶/拓扑异构酶 IV 靶向抗菌药物的机理研究
- 批准号:
10667862 - 财政年份:2023
- 资助金额:
$ 0.4万 - 项目类别:
Discovery of phosgene and chlorine gas modes of action and therapeutic targets using chemoproteomic profiling strategies
使用化学蛋白质组学分析策略发现光气和氯气的作用模式和治疗靶点
- 批准号:
10883970 - 财政年份:2023
- 资助金额:
$ 0.4万 - 项目类别:
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 0.4万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 0.4万 - 项目类别: