Mechanistic Studies of Gyrase/Topoisomerase IV-Targeted Antibacterials
旋转酶/拓扑异构酶 IV 靶向抗菌药物的机理研究
基本信息
- 批准号:10667862
- 负责人:
- 金额:$ 66.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-23 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:Acinetobacter baumanniiActive SitesAmino AcidsAnti-Bacterial AgentsAspartic AcidBacillus anthracisBacterial Drug ResistanceBindingBypassCell DeathCell Death InductionCellsCiprofloxacinClinicalComplexDNADNA DamageDNA Double Strand BreakDNA MaintenanceDNA Topoisomerase IVDouble EffectDrug InteractionsDrug resistanceDrug usageEnzyme InhibitionEnzymesEscherichia coliFluoroquinolonesFrancisella tularensisGenetic MaterialsGenomeGoalsHandednessHealthHumanIn VitroIncidenceIonsLaboratoriesLibrariesLigationMediatingMetalsMonitorMutationMycobacterium tuberculosisNeisseria gonorrhoeaeNeurofibrillary TanglesNew AgentsOralPharmaceutical PreparationsPhase III Clinical TrialsPhysiologicalPositioning AttributePublishingResearchResistanceRoleSerineSingle-Stranded DNASiteStaphylococcus aureusStructureSuperhelical DNASystemTopoisomerase IITopoisomerase InhibitorsToxinWaterWorld Health Organizationantimicrobialbacterial resistancecellular targetingclinical efficacydrug actionfluoroquinolone resistancein vitro activityin vivomembermutantnovelpathogenresistance mechanismtargeted agent
项目摘要
Fluoroquinolones, such as ciprofloxacin, are among the most efficacious and broad-spectrum oral
antibacterials in clinical use. The World Health Organization lists them in their five “Highest Priority Critically
Important Antimicrobials,” and these drugs are the most heavily prescribed antibacterials worldwide.
The cellular targets of fluoroquinolones are the bacterial type II topoisomerases, gyrase and topoisomerase IV.
These essential enzymes regulate DNA under- and overwinding and remove knots and tangles from the genome
by generating transient double-stranded breaks in the genetic material. Fluoroquinolones act by increasing levels
of double-stranded DNA breaks generated by gyrase and topoisomerase IV, which converts these enzymes into
cellular toxins that fragment the genome. Although gyrase and topoisomerase IV are both physiological targets
for fluoroquinolones, their relative importance to drug action appears to be species- and drug-dependent.
There is a growing crisis in antibacterial resistance and fluoroquinolone resistance is becoming prevalent. This
resistance is threatening the clinical efficacy of fluoroquinolones. Initial fluoroquinolone resistance is most often
associated with specific mutations in gyrase and/or topoisomerase IV that occur at a serine residue (originally
described as Ser83 in the GyrA subunit of Escherichia coli gyrase) and a glutamic/aspartic acid residue 4 amino
acids downstream. Based on a published structure and functional studies from the Osheroff laboratory, these
residues are proposed to anchor a water-metal ion bridge that serves as the primary conduit between fluoro-
quinolones and gyrase/topoisomerase IV.
The identification and characterization of novel agents that act against these well-validated enzyme targets
and overcome fluoroquinolone resistance could have important health ramifications. Recently, two new classes
of gyrase/topoisomerase IV-targeted agents have been described that appear to overcome this resistance, Novel
Bacterial Topoisomerase Inhibitors (NBTIs) and Spiropyrimidinetriones (SPTs). Members of these classes,
gepotidacin (NBTI) and zoliflodacin (SPT), have advanced to Phase 3 clinical trials. NBTIs are unique, as they
induce single- rather than double-stranded enzyme-generated DNA breaks. However, little is known about the
actions of NBTIs and SPTs against gyrase/topoisomerase IV or the mechanism of drug resistance.
There is an urgent need to identify drugs that display activity against fluoroquinolone-resistant bacteria. Thus,
the goals of this project are to further define the mechanism of action of fluoroquinolones, NBTIs, and SPTs against
gyrase and topoisomerase IV in vivo and in cells, to characterize the basis of target-mediated drug resistance,
and to identify novel compounds that overcome resistance. Research will benefit from the broad library of wild-
type and drug-resistant gyrase/topoisomerase IV available in the Osheroff laboratory, which includes enzymes
from Bacillus anthracis, E. coli, Staphylococcus aureus, Mycobacterium tuberculosis, Neisseria gonorrhoeae,
Francisella tularensis, and Acinetobacter baumannii. These pathogens have substantial effects on human health.
氟喹诺酮类(例如环丙沙星)是最有效,最广泛的口服
临床用途中的抗菌作用。世界卫生组织将它们列在其五个“最高优先级”中
重要的抗菌剂”,这些药物是全球规定的抗菌药物。
氟喹诺酮类酮的细胞靶标是II型细菌拓扑异构酶,回旋酶和拓扑异构酶IV。
这些必需酶调节DNA下和越来越多的DNA,并从基因组中去除结和缠结
通过在遗传物质中产生瞬态双链断裂。氟喹诺酮通过增加水平的作用
Gyrase和Topoisomerase IV产生的双链DNA断裂,将这些酶转化为
细胞毒素碎片基因组。尽管回旋酶和拓扑异构酶IV都是物理目标
对于氟喹诺酮类药物,它们对药物作用的相对重要性似乎是物种和药物依赖性的。
抗菌抗性的危机日益严重,氟喹诺酮耐药性变得普遍。这
耐药性威胁着氟喹诺酮的临床效率。最初的氟喹诺酮类电阻通常是
与在连续居住区发生的回旋酶和/或拓扑异构酶IV中的特异性突变有关(最初是
在大肠杆菌回旋酶的Gyra亚基中被描述为Ser83)和谷氨酸/天冬氨酸住宅4氨基
酸下游。基于Osheroff实验室的公开结构和功能研究,这些
提出了残留物来锚定一个水平离子桥,该桥是氟 -
喹诺酮类和回旋酶/拓扑异构酶IV。
针对这些验证良好的酶靶标的新型药物的识别和表征
克服氟喹诺酮耐药性可能会产生重要的健康后果。最近,两个新课程
已经描述了回旋酶/拓扑异构酶IV靶向剂的含量,似乎克服了这种抗性,
细菌拓扑异构酶抑制剂(NBTIS)和螺旋吡迪尼酮(SPTS)。这些课程的成员,
Gepotidacin(NBTI)和Zoliflodacin(SPT)已晋升为第三阶段临床试验。 NBTI是独一无二的
诱导单链酶产生的DNA断裂。但是,关于
NBTI和SPT对回旋酶/拓扑异构酶IV或耐药性机理的作用。
迫切需要鉴定出对抗氟喹诺酮类细菌的活性的药物。那,
该项目的目标是进一步定义氟喹诺酮,NBTI和SPT的作用机理
在体内和细胞中的回旋酶和拓扑异构酶IV,以表征靶介导的耐药性的基础,
并确定克服抗性的新型化合物。研究将受益于广泛的野生图书馆
Osheroff实验室可用的类型和耐药的回旋酶/拓扑异构酶IV,其中包括酶
来自炭疽芽孢杆菌,大肠杆菌,金黄色葡萄球菌,结核分枝杆菌,淋病奈瑟氏菌,
Francisella tularensis和Acinetobacter Baumannii。这些病原体对人类健康有重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NEIL OSHEROFF其他文献
NEIL OSHEROFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NEIL OSHEROFF', 18)}}的其他基金
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
- 批准号:
10364870 - 财政年份:2018
- 资助金额:
$ 66.89万 - 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
- 批准号:
10533336 - 财政年份:2018
- 资助金额:
$ 66.89万 - 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
- 批准号:
10079499 - 财政年份:2018
- 资助金额:
$ 66.89万 - 项目类别:
REGULATION OF CASEIN KINASE II BY EGF IN MAMMALIAN CELLS
哺乳动物细胞中 EGF 对酪蛋白激酶 II 的调节
- 批准号:
6236860 - 财政年份:1996
- 资助金额:
$ 66.89万 - 项目类别:
DNA LESIONS AS ENDOGENOUS TOPOISOMERASE POISONS
DNA 损伤作为内源性拓扑异构酶毒物
- 批准号:
2415346 - 财政年份:1996
- 资助金额:
$ 66.89万 - 项目类别:
DNA LESIONS AS ENDOGENOUS TOPOISOMERASE POISONS
DNA 损伤作为内源性拓扑异构酶毒物
- 批准号:
2910216 - 财政年份:1996
- 资助金额:
$ 66.89万 - 项目类别:
DNA LESIONS AS ENDOGENOUS TOPOISOMERASE POISONS
DNA 损伤作为内源性拓扑异构酶毒物
- 批准号:
6131038 - 财政年份:1996
- 资助金额:
$ 66.89万 - 项目类别:
相似海外基金
Discovery of inhibitors of the lipopolysaccharide synthesis pathway enzymes LpxA
脂多糖合成途径酶 LpxA 抑制剂的发现
- 批准号:
7912694 - 财政年份:2010
- 资助金额:
$ 66.89万 - 项目类别:
Class D carbapenemases: defining the role of carbapenem conformational changes
D 类碳青霉烯酶:定义碳青霉烯构象变化的作用
- 批准号:
8287854 - 财政年份:2009
- 资助金额:
$ 66.89万 - 项目类别: