Personal Mobile Diabetes Management System(PMDMS): IN-TRACK

个人移动糖尿病管理系统(PMDMS):IN-TRACK

基本信息

  • 批准号:
    8311248
  • 负责人:
  • 金额:
    $ 24.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-03 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Of the 24 million patients diagnosed with diabetes in the US, 6.5 million (27%) depend on a strict regime of insulin administration. Limited or unreliable patient reporting of critical diabetes care parameters (blood glucose measurements, carbohydrate intake, and insulin regime) is the leading source of diabetes mismanagement contributing to the $174 billion/year spending in diabetes care in the US. In particular, inaccurat insulin bolus computation in combination with limited tracking of critical diabetes care parameters is recognized as a principal cause of recurrent hypoglycemic events leading to poor diabetes management outcomes in insulin dependent patients. Despite the reported benefits of insulin pumps equipped to calculate insulin bolus and track diabetes care parameters, only 375,000 insulin dependent patients use them, leaving the majority of 6.1 million Americans in need of a solution. KRIKORJAN proposes Personal Mobile Diabetes Management System: IN-TRACK to deliver clinically accurate computation support and monitoring of critical diabetes care parameters leading to enhanced insulin management treatment. Phase I will focus in the development of IN-TRACK, an Insulin Management tool that incorporates a real-time insulin bolus computation with history tracking of diabetes care parameters, remaining active insulin, and physical activity, supporting the patient and the healthcare team in effectively managing insulin treatment and, by extension, diabetes. This Phase I development involves two Aims. Aim 1 will focus on building of a mobile software program capable of computing the next suggested insulin bolus (SIB) and tracking blood glucose, carbohydrate intake, physical activity, and remaining active insulin, and insulin in real-time as well as historically. The accuracy of SIB computation will be validated during Aim 2 via comparison testing against current insulin computation methods: insulin pumps (Revel(R) (MiniMed), Animas(R) (Johnson & Johnson), and OmniPod(R) (Insulet), electronic computations (the iPhone InsulinCalculator" (Friday Forward), the FreeStyle(R) InsuLinx (Abbott)) and paper protocols (paper wheel InsuCalc" (InsuCalc.com)). In Phase II, a clinical trial will evaluate the IN- TRACK potential to prevent insulin "stacking" (several boluses given in a short period of time leading to overlapping insulin activity) and associated reduction in hypoglycemic events. Additional tracking and just-in- time support and persuasion capabilities will be incorporated to address patient and clinical team needs emerging from the clinical evaluation. IN-TRACK builds on the patient and clinical need for practical and cost-effective tools to improve insulin management. Its practicability is embodied by the familiar mobile framework onto which is built requiring limited training and alleviating pump related limitations, while its usefulness is reflected by limiting hypoglycemic events and their life-threatening complications. PUBLIC HEALTH RELEVANCE: IN-TRACK addresses the needs of 94% of the insulin dependent diabetic population by offering a practical and cost-effective solution to improved diabetes treatment through better Insulin Management. Its clinically accurate insulin dose calculator is enhanced by real-time monitoring of blood glucose measurements, carbohydrate intake, physical activity, and insulin regime, along with quick access to trends by patient as well as clinician, followed by appropriate feedback. IN-TRACK represents a powerful Insulin Management tool which is expected to significantly reduce hypoglycemic incidents and improve overall diabetes care.
描述(由申请人提供):在美国被诊断患有糖尿病的 2400 万患者中,有 650 万(27%)依赖于严格的胰岛素给药方案。患者对关键糖尿病护理参数(血糖测量、碳水化合物摄入量和胰岛素治疗方案)的报告有限或不可靠,是糖尿病管理不善的主要原因,导致美国每年在糖尿病护理方面的支出高达 1740 亿美元。特别是,不准确的胰岛素推注计算与对关键糖尿病护理参数的有限跟踪相结合被认为是反复发生低血糖事件的主要原因,导致胰岛素依赖患者的糖尿病管理结果不佳。尽管据报道胰岛素泵具有计算胰岛素推注量和跟踪糖尿病护理参数的好处,但只有 375,000 名胰岛素依赖患者使用它们,这使得 610 万美国人中的大多数需要解决方案。 KRIKORJAN 提出个人移动糖尿病管理系统:IN-TRACK,以提供临床精确的计算支持和关键糖尿病护理参数的监控,从而增强胰岛素管理治疗。第一阶段将重点开发 IN-TRACK,这是一种胰岛素管理工具,它将实时胰岛素推注计算与糖尿病护理参数、剩余活性胰岛素和体力活动的历史跟踪相结合,从而有效地支持患者和医疗团队管理胰岛素治疗,进而管理糖尿病。 第一阶段的开发涉及两个目标。目标 1 将专注于构建一个移动软件程序,能够计算下一次建议的胰岛素推注 (SIB) 并跟踪血糖、碳水化合物摄入量、体力活动、剩余活性胰岛素以及实时和历史胰岛素。 SIB的准确性 计算将在目标 2 期间通过与当前胰岛素计算方法的比较测试进行验证:胰岛素泵 (Revel(R) (MiniMed)、Animas(R) (Johnson & Johnson) 和 OmniPod(R) (Insulet)、电子计算( iPhone InsulinCalculator”(星期五转发)、FreeStyle(R) InsuLinx (Abbott))和纸质实验方案(纸轮 InsuCalc”(InsuCalc.com))。在第二阶段,一项临床试验将评估 INTRACK 预防胰岛素“堆积”(短时间内多次推注导致胰岛素活性重叠)以及相关的低血糖事件减少的潜力。 IN-TRACK 将纳入时间支持和说服能力,以满足临床评估中出现的患者和临床团队的需求,其基础是患者和临床对改善胰岛素管理的实用且具有成本效益的工具的需求。其体现为熟悉的移动框架,其构建需要有限的培训并减轻泵相关的限制,而其实用性体现在限制低血糖事件及其危及生命的并发症。 公共卫生相关性:IN-TRACK 通过提供实用且经济高效的解决方案,通过更好的胰岛素管理改善糖尿病治疗,满足 94% 胰岛素依赖型糖尿病人群的需求。通过实时监测血糖测量值、碳水化合物摄入量、身体活动和胰岛素方案,以及快速了解患者的趋势,增强了其临床精确的胰岛素剂量计算器 作为临床医生,然后提供适当的反馈。 IN-TRACK 代表了一种强大的胰岛素管理工具,预计将显着减少低血糖事件并改善整体糖尿病护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gabriela Voskerician其他文献

Gabriela Voskerician的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gabriela Voskerician', 18)}}的其他基金

PERSEVERE-PEF: optimizing medical therapy saves lives in heart failure with preserved ejection fraction
PERSEVERE-PEF:优化药物治疗可挽救射血分数保留的心力衰竭患者的生命
  • 批准号:
    10641684
  • 财政年份:
    2022
  • 资助金额:
    $ 24.42万
  • 项目类别:
PERSEVERE-PEF: optimizing medical therapy saves lives in heart failure with preserved ejection fraction
PERSEVERE-PEF:优化药物治疗可挽救射血分数保留的心力衰竭患者的生命
  • 批准号:
    10381898
  • 财政年份:
    2022
  • 资助金额:
    $ 24.42万
  • 项目类别:
ARTERY Outcomes: tAilored dRug Titration through artificial intElligence: an inteRventional studY
动脉结果:通过人工智能定制药物滴定:一项干预性研究
  • 批准号:
    10001603
  • 财政年份:
    2019
  • 资助金额:
    $ 24.42万
  • 项目类别:
optima4heart: pharmacological intervention and transition of care in cardiovascular disease management
optima4heart:心血管疾病管理中的药物干预和护理转变
  • 批准号:
    9770702
  • 财政年份:
    2019
  • 资助金额:
    $ 24.42万
  • 项目类别:
PROTECT: optima4BP 2.0: prediction of Optimal Treatment and Route to achieve and maintain BP Target
保护:optima4BP 2.0:预测最佳治疗和路线以实现和维持血压目标
  • 批准号:
    10159301
  • 财政年份:
    2018
  • 资助金额:
    $ 24.42万
  • 项目类别:
PROTECT: optima4BP 2.0: prediction of Optimal Treatment and Route to achieve and maintain BP Target
保护:optima4BP 2.0:预测最佳治疗和路线以实现和维持血压目标
  • 批准号:
    9901106
  • 财政年份:
    2018
  • 资助金额:
    $ 24.42万
  • 项目类别:
Tailored Drug Titration through Artificial Intelligence
通过人工智能定制药物滴定
  • 批准号:
    9341533
  • 财政年份:
    2017
  • 资助金额:
    $ 24.42万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 24.42万
  • 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
  • 批准号:
    10711136
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
  • 批准号:
    10709381
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
  • 批准号:
    10588092
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
  • 批准号:
    10585508
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了