PERSEVERE-PEF: optimizing medical therapy saves lives in heart failure with preserved ejection fraction
PERSEVERE-PEF:优化药物治疗可挽救射血分数保留的心力衰竭患者的生命
基本信息
- 批准号:10381898
- 负责人:
- 金额:$ 103.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsAmericanAreaAtrial FibrillationAutomobile DrivingCaliforniaCardiologyCaringCessation of lifeClinicalComplexConfidential InformationConsumptionCoronary ArteriosclerosisData ElementDevelopmentDiagnosisDiseaseDisease ManagementDissemination and ImplementationEFRACElectronic Health RecordEnvironmentEvidence based interventionExpert SystemsGuidelinesHealth PersonnelHealth systemHeart failureHomeHospitalizationHospitalsHypertensionIncidenceIndividualIntelligenceJudgmentLeftLiquid substanceLogicMedicalMethodist ChurchMonitorPatientsPharmacologyPopulationProcessProtocols documentationRandomizedRecommendationRecordsSamplingSan FranciscoServicesSiteSoftware ValidationStandardizationSyndromeTestingTimeTreatment EfficacyUniversitiesVisualizationVotingWorkadjudicatecare coordinationclinical careclinical research sitecohortcollegecommunity cliniccomorbiditycostdata cleaningdigitalexperiencehealth datahospitalization rateshypertension controlimprovedimproved outcomeinteroperabilitymeetingsmortalitypersonalized carepost-COVID-19preservationregression algorithmresponsesystem architecturetreatment optimizationvolume hypertension
项目摘要
Need. In the US, heart failure (HF) is the contributing cause of 1 in 8 deaths. HF with preserved ejection
fraction (HFpEF) affects close to 50% of all HF patients. The 5-years mortality is 35%. HFpEF multi-organ
syndrome clinical care management is complex and time consuming. In addressing HFpEF, the American
College of Cardiology guidelines directed medical therapy (GDMT) references the medical therapy decision to
the individual disease guidelines [hypertension (HTN), coronary artery disease (CAD), atrial fibrillation (AFib)].
Providing concerted multi-disease HFpEF management is a major unmet clinical need.
Solution. In response to this need, we (OPTIMA) developed and demonstrated the feasibility of a clinical
analytic intelligence (AI) for the management of HFpEF multi-organ syndrome, optima4PEF AI. The solution
adds significant value to OPTIMA’s HF Management Service currently addressing the GDMT management of
HTN (optima4BP AI) and HFrEF (optima4heart AI). optima4PEF deconstructs a complex set of disease-
specific clinical guidelines and re-assembles them into a concerted multi-disease GDMT that is patient-
personalized, explainable, and actionable.
Objectives. PERSEVERE-PEF [optimizing medical therapy saves lives in heart failure with preserved ejection
fraction] proposes to complete the AI development of optima4PEF product concept, and to validate its efficacy
using contemporary, diverse, retrospective patient cohorts.
Aim 1. Build optima4PEF AI to address the GDMT management of HFpEF multi-organ syndrome.
Hypothesis. optima4PEF deconstructs a complex set of disease-specific clinical guidelines and re-assembles
them into a concerted multi-disease GDMT that is patient-personalized, explainable, and actionable.
The product concept work built the optima4PEF AI system architecture and developed the decision logic to
address GDMT management for patients experiencing HFpEF + volume overload + HTN. optima4PEF product
concept will be extended to include GDMT management of AFib and of CAD. An end-to-end algorithm
regression test will be performed to verify that each decision logic step performs its intended function.
Aim 2. Validate optima4PEF AI in recommending the most relevant GDMT. Hypothesis. In ≥ 90% of
patient cases, optima4PEF case-specific treatment recommendation is ACCEPTED as the appropriate next
step in the process of multi-disease GDMT treatment optimization of patients diagnosed with HFpEF.
Unidentified patient records will be collected from 4 clinical partner sites. A randomization algorithm will select
n=840 patient records. optima4PEF will generate a Treatment Action (TA) for each patient record. A simple
majority rule of pharmacology and cardiology experts (n=5) will adjudicate the optima4PEF TA.
optima4PEF averts loss of lives by assisting in the delivery of HFpEF multi-disease management.
optima4PEF surveillance & personalized care support the emerging digital-first clinical care practices.
在美国,心力衰竭 (HF) 是导致射血不全的心力衰竭死亡的原因之一。
HFpEF 影响了近 50% 的心力衰竭患者,HFpEF 多器官的 5 年死亡率为 35%。
美国人在处理 HFpEF 时,临床护理管理既复杂又耗时。
心脏病学院指导医学治疗指南 (GDMT) 参考了医学治疗决定
个体疾病指南[高血压(HTN)、冠状动脉疾病(CAD)、心房颤动(AFib)]。
提供协调一致的多疾病 HFpEF 管理是一个未满足的主要临床需求。
针对这一需求,我们(OPTIMA)开发并论证了临床的可行性。
用于管理 HFpEF 多器官综合征的分析智能 (AI),optima4PEF AI 解决方案。
为目前解决 GDMT 管理问题的 OPTIMA HF 管理服务增添了重要价值
HTN (optima4BP AI) 和 HFrEF (optima4heart AI) 解构了一组复杂的疾病 -
具体的临床指南并将其重新组装成协调一致的多疾病 GDMT,该指南针对患者
个性化、可解释且可操作。
目标 PERSEVERE-PEF [优化药物治疗可挽救射血性心力衰竭患者的生命。
fraction]提出完成optima4PEF产品概念的AI开发,并验证其功效
使用当代、多样化、回顾性的患者队列。
目标 1. 构建 optima4PEF AI 以解决 HFpEF 多器官综合征的 GDMT 管理问题。
optima4PEF 解构了一套复杂的特定疾病临床指南并重新组装。
将它们纳入协调一致的多疾病 GDMT,该 GDMT 是针对患者的个性化、可解释且可操作的。
产品概念工作构建了 optima4PEF AI 系统架构并开发了决策逻辑
解决 HFpEF + 容量超负荷 + optima4PEF 产品患者的 GDMT 管理问题。
概念将扩展到包括 AFib 和 CAD 的 GDMT 管理 端到端算法。
将执行回归测试以验证每个决策逻辑步骤是否执行其预期功能。
目标 2. 验证 optima4PEF AI 推荐的 GDMT ≥ 90%。
患者病例,optima4PEF 病例特定治疗建议被接受为适当的下一步
对诊断为 HFpEF 的患者进行多疾病 GDMT 治疗优化过程中的步骤。
将从 4 个临床合作伙伴站点收集身份不明的患者记录,并采用随机算法进行选择。
n=840 个患者记录 optima4PEF 将为每个患者记录生成一个简单的治疗行动 (TA)。
药理学和心脏病学专家(n=5)的多数规则将裁定最佳4PEF TA。
optima4PEF 通过协助进行 HFpEF 多疾病管理来避免生命损失。
optima4PEF 监测和个性化护理支持新兴的数字优先临床护理实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriela Voskerician其他文献
Gabriela Voskerician的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriela Voskerician', 18)}}的其他基金
PERSEVERE-PEF: optimizing medical therapy saves lives in heart failure with preserved ejection fraction
PERSEVERE-PEF:优化药物治疗可挽救射血分数保留的心力衰竭患者的生命
- 批准号:
10641684 - 财政年份:2022
- 资助金额:
$ 103.49万 - 项目类别:
ARTERY Outcomes: tAilored dRug Titration through artificial intElligence: an inteRventional studY
动脉结果:通过人工智能定制药物滴定:一项干预性研究
- 批准号:
10001603 - 财政年份:2019
- 资助金额:
$ 103.49万 - 项目类别:
optima4heart: pharmacological intervention and transition of care in cardiovascular disease management
optima4heart:心血管疾病管理中的药物干预和护理转变
- 批准号:
9770702 - 财政年份:2019
- 资助金额:
$ 103.49万 - 项目类别:
PROTECT: optima4BP 2.0: prediction of Optimal Treatment and Route to achieve and maintain BP Target
保护:optima4BP 2.0:预测最佳治疗和路线以实现和维持血压目标
- 批准号:
10159301 - 财政年份:2018
- 资助金额:
$ 103.49万 - 项目类别:
PROTECT: optima4BP 2.0: prediction of Optimal Treatment and Route to achieve and maintain BP Target
保护:optima4BP 2.0:预测最佳治疗和路线以实现和维持血压目标
- 批准号:
9901106 - 财政年份:2018
- 资助金额:
$ 103.49万 - 项目类别:
Tailored Drug Titration through Artificial Intelligence
通过人工智能定制药物滴定
- 批准号:
9341533 - 财政年份:2017
- 资助金额:
$ 103.49万 - 项目类别:
Personal Mobile Diabetes Management System(PMDMS): IN-TRACK
个人移动糖尿病管理系统(PMDMS):IN-TRACK
- 批准号:
8311248 - 财政年份:2012
- 资助金额:
$ 103.49万 - 项目类别:
相似国自然基金
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 103.49万 - 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 103.49万 - 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 103.49万 - 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 103.49万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 103.49万 - 项目类别: