Complex Dynamic Systems in Mood Disorders
情绪障碍中的复杂动态系统
基本信息
- 批准号:8033503
- 负责人:
- 金额:$ 16.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-28 至 2012-09-27
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdultAgeAge of OnsetAm 80ArousalAwardBiologicalBiological MarkersBiologyBipolar DisorderBrainBreathingCaringCharacteristicsChronicChronic DiseaseCircadian RhythmsClinicalCognitionCognitiveCognitive TherapyCollaborationsComplexDataData AnalysesData CollectionDevelopmentDevicesDiagnosisDiseaseDisease remissionEconomic BurdenEducational process of instructingEngineeringFacilities and Administrative CostsFunctional disorderFundingFutureGalvanic Skin ResponseGoalsHeart RateHeritabilityHospitalizationHourHumanIndividualInstitutesIsraelK-18 conjugateLeadLearningMajor Depressive DisorderManicMeasurementMeasuresMediator of activation proteinMedical centerMedicineMental DepressionMentorsMentorshipMethodsModelingMood DisordersMovementNational Institute of Mental HealthNeurosecretory SystemsNonlinear DynamicsOutcomePathologicPatientsPatternPhasePhase TransitionPhenotypePhysiologicalPilot ProjectsPopulationPrevalenceProceduresProcessReadingRecoveryRecurrenceReportingResearch PersonnelResearch TrainingRespirationSamplingSignal TransductionSleep StagesSleep Wake CycleSocietiesStatistical MethodsStereotypingStressSuicideSystemSystems AnalysisTimeTraining ProgramsTranslatingVariantVoiceWaxesabstractingalternative treatmentbaseclinically relevantcognitive rigiditycostdepressive symptomsdisabilityheart rate variabilityhypomaniainnovationnew technologynovelprogramsresponsesensorsexsingle episode major depressive disorder
项目摘要
DESCRIPTION (provided by applicant): This K18 application is to provide advanced mentorship in complex dynamic system analyses of clinical and biomarker data for major depressive disorder (MDD) and bipolar disorder (BD). MDD is a serious, debilitating illness that is projected to become the second global leading cause of disability by 2020. Bipolar disorder (BD) is a lifelong, chronic and highly recurrent, mood disorder characterized by episodes of mania or hypomania and episodes of major depression and is one of the top 10 causes of disability worldwide. The gap is that clinically relevant phenotypes and pathophysiology of MDD and BD are poorly delineated. One obstacle has been the prevalent use of static linear statistical measures to assess complex dynamic relationships between waxing and waning variables. Conventional analyses assume that signals are linear and stationary, and operate on a single (characteristic time) scale criteria that are routinely violated by real-world signals, i.e, they are highly nonlinear, operate on multiple time scales and are also nonstationary due to physiologic and pathologic phase transitions and other abrupt changes (bifurcations). The developmental aim of this K18 application is to learn methods to analyze complex dynamic nonlinear data to apply to the study of mood disorders with 12 months of intensive mentorship to the applicant through didactics and supervised analyses mentored by Ary L. Goldberger, Director of the Rey Institute for Nonlinear Dynamics in Medicine at Beth Israel Deaconess Medical Center and Wyss Institute for Biological Inspired Engineering at Harvard. The pilot project will analyze measures of arousal, heart rate, respiration, movement, and sleep stages using a 24 hour wearable devices from 5 patients with MDD, 5 age and sex matched patients with BP, and 5 matched healthy controls. These analyses will a) explore differences between MDD and healthy controls; b) BD and healthy controls; and c) MDD and BD. Methods for analyzing complex dynamic systems can open innovative new windows into understanding mood disorders. The applicant's long-term goal is to be able to apply nonlinear dynamics to the daunting problem of finding biologically relevant phenotypes and clinically useful biomarkers.
PUBLIC HEALTH RELEVANCE: This research training program will teach the applicant how to use advanced statistical methods to analyze complicated data that vary over time from patients with mood disorders. Voice patterns, heart rate, breathing patterns, and movements over 24 hours are a few examples. These methods can lead to better diagnoses, better ways to understand the biology of mood disorders, and ways to measure response to treatment.
描述(由申请人提供):此 K18 应用程序旨在为重度抑郁症 (MDD) 和双相情感障碍 (BD) 的临床和生物标志物数据的复杂动态系统分析提供高级指导。 MDD 是一种严重的、使人衰弱的疾病,预计到 2020 年将成为全球第二大残疾原因。双相情感障碍 (BD) 是一种终生、慢性且高度复发的情绪障碍,其特征是躁狂或轻躁狂发作以及重度抑郁发作是全球十大致残原因之一。差距在于 MDD 和 BD 的临床相关表型和病理生理学尚不清楚。一个障碍是普遍使用静态线性统计测量来评估盛衰变量之间的复杂动态关系。传统分析假设信号是线性和平稳的,并且在单一(特征时间)尺度标准上运行,而现实世界的信号经常违反这些标准,即它们是高度非线性的,在多个时间尺度上运行,并且由于生理原因也是非平稳的。以及病理相变和其他突变(分叉)。 此 K18 应用程序的开发目标是学习分析复杂动态非线性数据的方法,以应用于情绪障碍的研究,并通过 Rey 主任 Ary L. Goldberger 的教学和监督分析对申请人进行 12 个月的强化指导。贝斯以色列女执事医疗中心的非线性医学动力学研究所和哈佛大学的维斯生物启发工程研究所。 该试点项目将使用 24 小时可穿戴设备分析 5 名 MDD 患者、5 名年龄和性别匹配的 BP 患者以及 5 名匹配的健康对照者的唤醒、心率、呼吸、运动和睡眠阶段的测量结果。这些分析将 a) 探索 MDD 与健康对照之间的差异; b) BD 和健康对照; c) MDD 和 BD。 分析复杂动态系统的方法可以为理解情绪障碍打开创新的新窗口。申请人的长期目标是能够应用非线性动力学来解决寻找生物学相关表型和临床有用的生物标志物的艰巨问题。
公共卫生相关性:该研究培训计划将教申请人如何使用先进的统计方法来分析情绪障碍患者随时间变化的复杂数据。声音模式、心率、呼吸模式和 24 小时内的运动只是几个例子。这些方法可以带来更好的诊断、更好的方法来理解情绪障碍的生物学,以及衡量治疗反应的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW A NIERENBERG其他文献
ANDREW A NIERENBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW A NIERENBERG', 18)}}的其他基金
Comparative Effectiveness Study for Bipolar Disorder
双相情感障碍的比较有效性研究
- 批准号:
8008954 - 财政年份:2010
- 资助金额:
$ 16.82万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A rigorous test of dual process model predictions for problematic alcohol involvement
对有问题的酒精参与的双过程模型预测的严格测试
- 批准号:
10679252 - 财政年份:2023
- 资助金额:
$ 16.82万 - 项目类别:
Feasibility Trial of a Novel Integrated Mindfulness and Acupuncture Program to Improve Outcomes after Spine Surgery (I-MASS)
旨在改善脊柱手术后效果的新型综合正念和针灸计划的可行性试验(I-MASS)
- 批准号:
10649741 - 财政年份:2023
- 资助金额:
$ 16.82万 - 项目类别:
The Illinois Precision Medicine Consortium (IPMC) All of Us Research Program Site
伊利诺伊州精准医学联盟 (IPMC) All of Us 研究计划网站
- 批准号:
10872859 - 财政年份:2023
- 资助金额:
$ 16.82万 - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
$ 16.82万 - 项目类别:
Midlife cardiovascular stress physiology and preclinical cerebrovascular disease
中年心血管应激生理学与临床前脑血管疾病
- 批准号:
10720054 - 财政年份:2023
- 资助金额:
$ 16.82万 - 项目类别: